簡易檢索 / 詳目顯示

研究生: 游俊達
Yu, Chun-Ta
論文名稱: 以有機金屬化學氣相沉積法研製高效率三族氮化物光電元件
The Growth and Fabrication of High Efficiency III-Nitride-Based Optoelectronic Device by Metal-organic Chemical Vapor Deposition
指導教授: 張守進
Chang, Shoou-Jinn
賴韋志
Lai, Wei-Chih
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 122
中文關鍵詞: 有機金屬化學氣相沉積氮化鎵發光二極體模擬分析太陽能電池
外文關鍵詞: MOCVD, GaN, LEDs, Simulation, Solar cells
相關次數: 點閱:108下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是成長並研製高亮效率之三族氮化物光電元件。本研究主要提出二個方向來提升氮化鎵發光二極體的效率,其中包含,應用氮化鋁鎵和氮化銦鎵組成的超晶格結構於電子阻檔層中。以數位切換氮化銦和氮化鎵的方式,成長氮化銦鎵量子井結構。另外在氮化銦鎵太陽能電池中,提出兩種方法提升轉換效率,為利用濺鍍法成長的氮化鋁成核層,和n型氮化鋁鎵量子井障。
    首先利用鎂摻雜的氮化鋁鎵和氮化銦鎵組成的超晶格結構於電子阻檔層中,能夠改善氮化鎵發光二極體的操作電壓、光輸出功率、效率下降的效應。在超晶格電子阻檔層中,較厚的氮化銦鎵能夠提高電子的位障,降低電洞的位障並防止電子漏電流進入p型區中,也加強了電洞的注入效率。同時擁有較低的側向電阻,於大電流操作下有較佳的電流散佈能力。
    其次以數位切換氮化銦和氮化鎵的方式成長高品質且厚的氮化銦鎵量子井結構。其量子井在銦含量17.6%,厚度達7奈米下同時可保有高晶格品質。在操作電流60 mA下,和傳統的量子井比較,其光輸出功率至少改28.9%。但是其效率下降的效應比起傳統的量子井較為嚴重。其光學特性上是優於傳統的量子井。利用變溫光激發光強度得到的活化能和。以數位切換氮化銦和氮化鎵的方式成長的厚量子井其活化能48 meV 高於傳統薄量子井25 meV 。此外其sigma值為19 meV 小於傳統薄量子井的sigma值25 meV 。
    接著利用濺鍍法成長的氮化鋁成核層於氮化銦鎵太陽能電池中。利用濺鍍法成長的氮化鋁成核層可有效地降低磊晶材料的混合型差排。使得復合電流降低和減少漏電流路徑,因此其短路電流和開路電壓都獲得改善。其1-sun η為1.92%改善27.2%比起傳統的氮化鎵成核層為1.51%。此外在聚光100-sun 下其η為1.99%改善18.5%比起傳統的氮化鎵成核層為1.68%。
    最後為利用兩對氮化鋁鎵/氮化銦鎵量子井取代氮化鎵/氮化銦鎵量子井結構,能夠改善氮化銦鎵太陽能電池的開路電壓、填充因子、轉換效率。其在2 V下於365 nm到420 nm的外部量子效率大於傳統氮化鎵/氮化銦鎵量子井。透過模擬分析為利用兩對氮化鋁鎵/氮化銦鎵量子井於接近開路電壓下,能夠降低復合電流。。因此其填充因子獲得改善,並使得其1-sun η為1.86%改善27.4%比起傳統的n型氮化鎵量子井障為1.46%。

    Growth and fabrication of high efficiency GaN-based optoelectronic devices were successfully demonstrated in this dissertation. This dissertation proposed two directions to enhance the efficiency for fabrication of InGaN-based LEDs, include the methods of Mg-doped AlGaN/InGaN superlattice electron blocking layer and digital InN/GaN growth in InGaN well. We also proposed two methods to improve the efficiency of InGaN-based solar cells by introducing ex-situ AlN nucleation layer and Si-doped AlGaN barriers.
    Firstly, the operating voltage, light output power, and efficiency droops of GaN-based light emitting diodes (LEDs) were improved by introducing Mg-doped AlGaN/InGaN superlattice (SL) electron blocking layer (EBL). The thicker InGaN layers of AlGaN/InGaN SL EBL could have a larger effective electron potential height and lower effective hole potential height than that of AlGaN EBL. This thicker InGaN layer could prevent electron leakage into the p-region of LEDs and improve hole injection efficiency to achieve a higher light output power and less efficiency droops with the injection current. The low lateral resistivity of Mg-doped AlGaN/InGaN SL would have superior current spreading at high current injection.
    Secondly, thick InGaN wells of LEDs with high crystal quality can be prepared by using digital InN/GaN growth for the InGaN wells. The thickness of high crystal quality InGaN wells can be sustained with In% of 17.6% more than 7 nm. The 60 mA output power of LEDs with thick InN/GaN alternative growth InGaN wells indicate an enhancement of at least 28.9% compared with that of LEDs with conventional InGaN wells. However, LEDs with thick InN/GaN alternative growth InGaN wells have larger efficiency droops than LEDs with conventional InGaN wells. Compared with conventionally grown thin InGaN wells, thick InGaN wells with digitally grown InN/GaN exhibit superior optical properties. The activation energy (48 meV) of thick InGaN wells (generated by digital InN/GaN growth from temperature-dependent integrated photoluminescence intensity) is larger than the activation energy (25 meV) of conventionally grown thin InGaN wells. Moreover, thick InGaN wells with digitally grown InN/GaN exhibit a smaller  value (the degree of localization effects) of 19 meV than that of conventionally grown thin InGaN wells (23 meV).
    Thirdly, GaN solar cells (SCs) with ex-situ AlN nucleation layer are examined in this study. GaN with sputtered ex-situ AlN nucleation layer has mixed-type dislocation density at approximately one order less than that of GaN with in-situ GaN nucleation layer. The reduction of dislocation density by the sputtered AlN nucleation layer could suppress the reverse leakage current and the recombination forward current in low forward voltage range of SCs, and then can increase Jsc and Voc of the SCs. 1-sun η% of SCs with ex-situ AlN nucleation (1.92%) showed an enhancement of 27.2% compared with that of conventional SC at 1.51%. Furthermore, the 100-sun η% of SCs with ex-situ AlN nucleation (1.99%) showed 18.5% improvement compared with that of conventional SC (1.68%).
    Finnaly, the Voc, FF%, and η% of GaN-based SCs can be improved by replacing an initial 2-pair GaN/InGaN with 2-pair AlGaN/InGaN multilayer. The IPCE of SCs with 2-pair AlGaN/InGaN multilayer is higher than that with GaN/InGaN at 2 V for wavelengths in range of 365 nm to 420 nm. From the results of the numerical simulation, we found that the FF% improvement of the SCs with the 2-pair AlGaN/InGaN multilayer should be attributed to the photo-generated carrier recombination rate suppression near the bias of the Voc. The 1-sun η of SCs with Si-doped Al0.10GaN barriers (1.86%) showed 27.4% enhancement compared with that with Si-doped GaN barriers (1.46%).

    摘要(In Chinese) I Abstrct(In English) III Acknowledge VI Contents VII Table Captions X Figure Captions XI Chapter1 Introduction 1 1.1 Background 1 1.2 Organization of this dissertation 2 Reference 6 Chapter 2 Fabrication and Measurement Apparatus 10 2.1 Metal-organic Chemical Vapor Deposition(MOCVD) 10 2.2 Epitaxial Growth by In-Situ Monitor 12 2.3 High resolution X-ray diffraction (HR-XRD) System 13 2.4 Temperature-Dependent Photoluminescence (TDPL)System 14 2.5 Electricluminescence (EL) 15 Reference 18 Chapter 3 Effects of InGaN layer thickness of AlGaN/InGaN superlattice electron blocking layer on the efficiency of GaN-based light emitting diodes 23 3.1 Motivation 23 3.2 Numerical analysis 24 3.3 Experiment and results 29 3.4 Summary 34 References 35 Chapter 4 The effects of GaN-based green light emitting diodes with digital InN/GaN Growth InGaN Wells 47 4.1 Motivation 47 4.2 Experiment 48 4.3 The effects of the growth sequences and source flow rate of InN and GaN of the digital growth InGaN wells 50 4.4 Optical characteristics of thick InGaN wells with digitally grown InN/GaN 56 4.5 Summary 59 References 61 Chapter 5 Conversion efficiency improvement of InGaN/GaN multiple-quantum-well solar cells with ex-situ AlN nucleation layer and AlGaN/InGaN multilayer 78 5.1 Motivation 78 5.2 InGaN/GaN multiple-quantum-well solar cells with ex-situ AlN nucleation Layer 80 5.3 Depletion manipulation of InGaN/GaN multiple quantum well solar cells by AlGaN/InGaN multilayer to improve conversion efficiency 86 5.4 Summary 92 References 94 Chapter 6 Conclusion and Future work 116 6.1 Conclusion 116 6.2 Future work 119

    References-Chapter1
    [1]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
    [2]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278-283, 2002.
    [3]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 744-748, 2002.
    [4]O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, pp. 132177-1–132177-3, 2007.
    [5]O. Jani, C. Honsberg, A. Asghar, D. Nicoi, I. Ferguson, A. Doolittle, and S. Kurtz, “Characterization and analysis of InGaN photovoltaic devices,” in 31st IEEE Photovoltaic Specialists Conf., pp. 37–42, 2005.
    [6]H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Solar Energy Mater. and Solar Cells, vol. 81, pp. 595–603, 2005.
    [7]X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, “Simulation of In0.65Ga0.35N single-junction solar cell,” J. Phys. D, Appl. Phys., vol. 40, pp. 7335–7338, 2007.
    [8]H. Yıldırım and B. Aslan, “Binding energies and oscillator strengths of impurity states in wurtzite InGaN/GaN staggered quantum wells,” J. Appl. Phys., vol. 112, pp. 053525-1–053525-5, 2012.
    [9]K. A. Jones and I. G. Batyrev, “The structure of dislocations in (In,Al,Ga)N wurtzite films grown epitaxially on (0001) or (11-22) GaN or AlN substrates,” J. Appl. Phys., vol. 112, p. 113507-1–113507-5, 2012.
    [10]E. F. Schubert, Light-Emitting Diodes, Second ed. Cambridge, U.K.: Cambridge Univ. Press, pp. 211–213, 2006
    [11]J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, Hai Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−x GaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, pp. 6477–6482, 2003.
    [12]D. S. Meyaard, G. B. Lin, Q. Shan, J. H. Cho, E. F. Schubert, H. Shim, M.H. Kim, and C. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Appl. Phys. Lett., vol. 99, pp. 251115-1–251115-3, 2011.
    [13]G. B. Lin, D. Meyaard, J. H. Cho, E. F. Schubert, H. Shim, and C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency,” Appl. Phys. Lett., vol. 100, pp. 161106-1–161106-3, 2012.
    [14]X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 72, pp. 692–694, 1998.
    [15]H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., vol. 79, pp. 215–217, 2001.
    [16]N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett., vol. 77, pp. 1274–1276, 2000.
    [17]S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of in flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 40, pp. L371–L373, 2001.
    [18]M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C. H. Hong, and E. K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth,” Jpn. J. Appl. Phys., vol. 47, pp. 839–842, 2008.
    [19]H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett., vol. 92, pp. 161113-1–161113-3, 2008.
    [20]F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, pp. 351-359, 1997.
    [21]C. H. Yen, W. C. Lai, Y. Y. Yang, C. K. Wang, T. K. Ko, S. J. Hon, and S. J. Chang, “GaN-based light-emitting diode with sputtered AlN nucleation layer,” IEEE Photon. Tech. Lett., vol. 24, pp. 294-296, 2012.
    [22]J. J. Wierer Jr., D. D. Koleske, and S. R. Lee1, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett., vol. 100, pp. 111119-1–111119-3, 2012.
    [23]J. J. Wierer Jr., A. J. Fischer, and D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices,” Appl. Phys. Lett., vol. 96, pp. 051107-1–051107-3, 2010.
    [24]C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. Denbaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett., vol. 98, pp. 243507-1–243507-3, 2011.
    [25]C. C. Yang, J. K. Sheu, Xin-Wei. Liang, Min-Shun. Huang, M. L. Lee, K. H. Chang, S. J. Tu, Feng-Wen. Huang, and W. C. Lai, “Enhancement of The Conversion Efficiency of GaN-Based Photovoltaic Devices with AlGaN/InGaN Absorption Layers,” Appl. Phys. Lett., vol. 97, pp. 021113-1–021113-3, 2010.

    References-Chapter2
    [1]S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys., vol. 35, pp. L74–L76, 1997.
    [2]H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112–L2114, 1989.
    [3]S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, ” Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, pp. L139–L141, 1992.
    [4]I. Akasaki and Hiroshi, “Breakthroughs in Improving Crystal Quality of GaN and Invention of the p–n Junction Blue-Light-Emitting Diode,” Jpn. J. Appl. Phys., vol. 45, pp. 9001–9010, 2006.
    [5]S. Nakamura, M. Senoh, N. Iwasa and S.I. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys., vol. 34, L797–L799, 1995.
    [6]C. H. Ko, Y. K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin and J. Webb, “P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diode Structure Grown by Metal-Organic Vapor-Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 41, pp. 2489–2492, 2002.
    [7]T. C. Wen and W. I. Lee, “Influence of Barrier Growth Temperature on the Properties of InGaN/GaN Quantum Well,” Jpn. J. Appl. Phys., vol. 40, pp. 5302–5303, 2001.
    [8]J. K Sheu, C. J Pan, G. C. Chi, C. H. Kuo, L. W Wu, C. H. Chen, S. J. Chang and Y. K. Su, “White-light emission from InGaN-GaN multi quantum-well light-emitting diodes with Si and Zn codoped active well layer”, IEEE Photon. Technol. Lett., vol. 14, pp. 450–452, 2002.
    [9]S. Nakamura, “Analysis of real-time monitoring using interference effects,” Jpn. J. Appl. Phys., vol. 30, pp. 1348–1353, 1991.
    [10]H. Amano, I. Akasak, K. Hiramatsu and N. Koide, “Effects of the buffer layer in
    metalorganic vapour phase epitaxy of GaN on sapphire substrate,” Thin Solid Film, vol. 163, pp. 415–420, 1988.
    [11]D. K. Bowen and B. K. Tanner, “High Resolution X-ray iffractometry and Topography”, CRC Press. USA, 1998.
    [12]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys., vol. 86, pp. 3721–3728, 1999.
    [13]E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys., vol. 94, pp. 3121–3127, 2003.
    [14]P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett., vol. 71, pp. 569–571, 1997.
    [15]E. F. Schubert, Light-Emitting Diodes, Second ed. Cambridge, U.K.: Cambridge Univ. Press, pp. 87–88, 2006.

    References-Chapter3
    [1]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332–L1335, 1995.
    [2]T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Nau, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A ., vol. 200, pp. 52–57, 2003.
    [3]W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures,” Appl. Phys. Lett., vol. 97, pp. 081103-1–081103-3, 2010.
    [4]J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett., vol. 88, pp. 013501-1–013501-1, 2006.
    [5]Y. -L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, pp. 2728–2730, 2000.
    [6]J. Jewell, D. Simeonov, S. C. Huang, Y. L. Hu, S. Nakamura, J. Speck, and C. Weisbuch, “Double embedded photonic crystals for extraction of guided light in light-emitting diodes,” Appl. Phys. Lett., vol. 100, pp. 171105-1–171105-3, 2012.
    [7]P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD analysis on extraction efficiency of GaN light-emitting diodes with microsphere arrays,” J. Display Technol., vol. 9, pp. 317–323, 2013.
    [8]X. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Display Technol., vol. 9, pp. 324–332, 2013.
    [9]Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron, vol. 15, pp. 1066–1072, 2009.
    [10]Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth, vol. 312, pp. 1311–1315, 2010.
    [11]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, pp. 151102-1–151102 -3, 2011.
    [12]D. S. Meyaard, G. B. Lin, Q. Shan, J. H. Cho, E. F. Schubert, H. Shim, M.H. Kim, and C. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Appl. Phys. Lett., vol. 99, pp. 251115-1–251115-3, 2011.
    [13]G. B. Lin, D. Meyaard, J. H. Cho, E. F. Schubert, H. Shim, and C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency,” Appl. Phys. Lett., vol. 100, pp. 161106-1–161106-3, 2012.
    [14]S. J. Lee, S. H. Han, C. Y. Cho, S. P. Lee, D. Y. Noh, H. W. Shim, Y. C. Kim, and S. J. Park, “Improvement of GaN-based light-emitting diodes using p-type AlGaN/GaN superlattices with a graded Al composition,” J. Phys. D: Appl. Phys., vol. 44, pp. 105101-1–105101-5, 2011.
    [15]Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett., vol. 99, pp. 221103-1–221103-3, 2011.
    [16]B.C. Lin, K.J. Chen, H.V. Han, Y.P. Lan, C.H. Chiu, C.C. Lin, M.H. Shih, P.T. Lee H.C. Kuo “Advantages of blue LEDs with graded-composition AlGaN/GaN superlattice EBL,” IEEE Photonics Technol. Lett., vol. 25, pp. 2062–2065, 2013.
    [17]Y. Y. Zhang, X. L. Zhu, Y. A. Yin, and J Ma, “Performance enhancement of near-UV light-emitting diodes with an InAlN/GaN superlattice electron-blocking layer,” IEEE Electron Device Lett., vol. 33, pp. 994–996, 2012.
    [18]J. Chen, G. H. Fan, W. Pang, S. W. Zheng, and Y. Y. Zhang, “Improvement of efficiency droop in blue InGaN light-emitting diodes with p-InGaN/GaN superlattice last quantum barrier,” IEEE Photonics Technol. Lett., vol. 24, pp. 2218–2220, 2012.
    [19]F. M. Chen, B. T. Lioub, Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE, vol. 8625, pp. 862526-1–862526-7, 2013.
    [20]P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett., vol. 74, pp. 3681–3683, 1999.

    References-Chapter4
    [1]S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64 , pp. 1687–1689, 1994.
    [2]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278–283, 2002.
    [3]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron, vol. 8, pp. 744–748, 2002.
    [4]S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting-Diodes with Quantum-Well Structures,”Jpn. J. Appl. Phys., vol. 34, pp. L797–L799, 1995.
    [5]T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Nau, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light emitting devices,” Phys. Status Solidi A, vol. 200, pp. 52–57, 2003.
    [6]W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures,” Appl. Phys. Lett., vol. 97, pp. 081103-1–081103-3, 2010.
    [7]J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett., vol. 88, pp. 013501-1–013501-3, 2006.
    [8]Y. L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, pp. 2728–2730, 2000.
    [9]J. Jewell, D. Simeonov, S. C. Huang, Y. L. Hu, S. Nakamura, J. Speck, and C. Weisbuch, “Double embedded photonic crystals for extraction of guided light in light-emitting diodes,” Appl. Phys. Lett., vol. 100, pp. 171105-1–171105-3, 2012.
    [10]P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD Analysis on Extraction Efficiency of GaN Light-Emitting Diodes With Microsphere Arrays,” J. Display Technol., vol. 9, pp. 317–323, 2013.
    [11]X. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light Extraction Efficiency Enhancement of III-Nitride Light-Emitting Diodes by Using 2-D Close-Packed TiO2 Microsphere Arrays,” J. Display Technol., vol. 9, pp. 324–332, 2013.
    [12]Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1066–1072, 2009.
    [13]Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth, vol. 312, pp. 1311–1315, 2010.
    [14]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, pp. 151102-1–151102-3, 2011.
    [15]X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 72, pp. 692–694, 1998.
    [16]H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., vol. 79, pp. 215–217, 2001.
    [17]N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,” Appl. Phys. Lett., vol. 77, pp. 1274–1276, 2000.
    [18]C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN-GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 70, pp. 2978–2980, 1997.
    [19]I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett., vol. 73, pp. 1634–1636, 1998.
    [20]Y. Chen, T. Takeuchi, H. Amino, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett., vol. 72, pp. 710–712, 1998.
    [21]S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of in flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 40, pp. L371–L373, 2001.
    [22]M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C. H. Hong, and E. K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth,” Jpn. J. Appl. Phys., vol. 47, pp. 839–842, 2008.
    [23]H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett., vol. 92, pp. 161113-1–161113-3, 2008.
    [24]Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, “Stable Temperature Characteristics and Suppression of Efficiency Droop in InGaN Green Light-Emitting Diodes Using Pre-TMIn Flow Treatment,” IEEE Photonics Technol. Lett., vol. 22, pp. 1279–1281, 2010.
    [25]S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, “Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption,” J. Cryst. Growth, vol. 325, pp. 41–45, 2011.
    [26]M. C. Johnsona, S. L. Konseka, A. Zettla, E.D. Bourret-Courchesne, “Nucleation and growth of InN thin films using conventional and pulsed MOVPE,” J. Cryst. Growth, vol. 272, pp. 400–406, 2004.
    [27]M. Jamil, H. Zhao, J. B. Higgins, and N. Tansu, “Influence of growth temperature and V/III ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE,” J. Cryst. Growth, vol. 310, pp. 4947–4953, 2008.
    [28]M. Jamil, H. Zhao, J. B. Higgins, and N. Tansu, “MOVPE and photoluminescence of narrow band gap (0.77 eV) InN on GaN/sapphire by pulsed growth mode,” Phys. Status Solidi A, vol. 25, pp. 2886–2891, 2008.
    [29]C. Y. Chang, S. J. Chang, C. H. Liu, S. G. Li and T. K. Lin, “GaN-based LEDs with double strain releasing MQWs and Si delta-doping layers,” IEEE Photon. Technol. Lett., vol. 24, pp. 1809–1811, 2012.
    [30]J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev., vol. 1, pp. 307–333, 2007.
    [31]M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys., vol. 113, pp. 192-195, 2009.
    [32]W. Liu, S. J. Chua, X. H. Zhang, and J. Zhang, “Effect of high temperature and interface treatments on photoluminescence from InGaN/GaN multiple quantum wells with green light emissions,” Appl. Phys. Lett., vol. 83, pp. 914–916, 2003.
    [33]G. Pozina, J. P. Bergman, B. Monemar, S. Yamaguchi, H. Amano, and I. Akasaki, “Optical spectroscopy of GaN grown by metalorganic vapor phase epitaxy using indium surfactant,” Appl. Phys. Lett., vol. 76, pp. 3388–3390, 2000.
    [34]T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, and S. Sakai, "Role of Dislocation in InGaN Phase Separation," Jpn. J. Appl. Phys., Part 2, vol. 37, pp. L1195–L1198, 1998.
    [35]S. Yamaguchi, M. Kariya, S. Nitta, H. Amano, and I. Akasaki, "The Effect of Isoelectronic In-Doping on the Structural and Optical Properties of (Al)GaN Grown by Metalorganic Vapor Phase Epitaxy," Jpn. J. Appl. Phys., vol. 39, pp. 2385–2388, 2000.
    [36]M. I. Richard, M. J. Highland, T. T. Fister, A. Munkholm, J. Mei, S. K. Streiffer, C. Thompson, P. H. Fuoss, and G. B. Stephenson, “In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN,” Appl. Phys. Lett. vol. 96, pp. 051911-1–051911-3, 2010.
    [37]B. J. Spencer, P. W. Voorhees, and J. Tersoff, “Morphological instability theory for strained alloy film growth: The effect of compositional stresses and species-dependent surface mobilities on ripple formation during epitaxial film deposition,” Phys. Rev. B vol. 64, pp. 235318-1–235318-3, 2001.
    [38]Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica Status Solidi (RRL), vol. 34, pp. 149–154, 1967.
    [39]L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B, vol. 30, pp. 1979–1991, 1984.
    [40]P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett., vol. 71, pp. 569–571, 1997.
    [41]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett., vol. 69, pp. 4188–4190, 1996.
    [42]Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exaction localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, pp. 981–983 , 1997.
    [43]F. B. Naranjo, M. A. Sánchez-García, F. Calle, and E. Calleja, “Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 80, pp. 231–233, 2002.
    [44]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys., vol. 86, pp. 3721–3728, 1999.
    [45]E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L. Si Dang, and B. Daudin, “Molecular-beam epitaxial growth and characterization of quaternary III–nitride compounds,” J. Appl. Phys., vol. 94, pp. 3121–3127, 2003.
    [46]J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett., vol. 92, pp. 091901-1–091901-3, 2008.
    [47]G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi A, vol. 205, pp. 1086–1092, 2008.

    References-Chapter5
    [1]Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett, vol. 91, pp. 132177-1–132177-3, 2007.
    [2]O. Jani, C. Honsberg, A. Asghar, D. Nicoi, I. Ferguson, A. Doolittle, and S. Kurtz, “Characterization and analysis of InGaN photovoltaic devices,” in 31st IEEE Photovoltaic Specialists Conf., pp. 37–42, 2005.
    [3]H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Solar Energy Mater. and Solar Cells, vol. 81, pp. 595–603, 2005.
    [4]X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, “Simulation of In0.65Ga0.35N single-junction solar cell,” J. Phys. D, Appl. Phys., vol. 40, pp. 7335–7338, 2007.
    [5]C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol. 93, pp. 143502-1–143502-3, 2008.
    [6]R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, pp. 724–727, 2009.
    [7]S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, and F. Sweeney, “Compositional pulling effects in In Ga GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B, vol. 64, pp. 205311-1–205311-5, 2001.
    [8]K. Hiramatsu, Y.Kawaguchi,M. Shimizu, N. Sawaki, T. Zheleva, R. F.Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res., vol. 2, pp. U3–U12, 1997.
    [9]S. Pereira, M. R. Correia, E. Pereira, K. P. ODonnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in Wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett., vol. 80, pp. 3913–3915, 2002.
    [10]R. Liu, J.Mei, S.Srinivasan, F.A.Ponce, H.Omiya, Y.Narukawa, and T.Mukai, “Generation of misfit dislocations by basal-plane slip in InGaN/GaN hetero-structures,” Appl. Phys. Lett., vol. 89, pp. 201911-1–201911-3, 2006.
    [11]H. K. Cho , J. Y. Lee and G. M. Yang “Characterization of pit formation in III-nitrides grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 80, pp.1370 -1372, 2002.
    [12]J.K. Sheu, C. C.Yang, S. J. Tu,H. K. Chang,M. L. Lee,W.C.Lai, and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett., vol. 30, pp. 225–227, 2009.
    [13]E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett., vol. 98, pp. 021102-1–021102-3, 2011.
    [14]F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, pp. 351-359, 1997.
    [15]X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P. Denbaars, and J. S. Speck, “Dislocation generation in GaN heteroepitaxy,” J. Cryst. Growth, vol. 189, pp. 231-243, 1998.
    [16]S. W. Lee, J. S. Ha, H. J. Lee, H. J. Lee, H. Goto, T. Hanada, T. Goto, K. Fujii, M. W. Cho, and T. Yao, “Lattice strain in bulk GaN epilayers grown on CrN/sapphire template,” Appl. Phys. Lett., vol. 94, pp. 082105-1–082105-3, 2007.
    [17]C. H. Yen, W. C. Lai, Y. Y. Yang, C. K. Wang, T. K. Ko, S. J. Hon, and S. J. Chang, “GaN-based light-emitting diode with sputtered AlN nucleation layer,” IEEE Photon. Tech. Lett., vol. 24, pp. 294-296, 2012.
    [18]C. Y. Lee, A. J. Tzou, B. C. Lin, Y. P. Lan, C. H. Chiu, G. C. Chi, C. H. Chen, H. C. Kuo, R. M. Lin and C. Y. Chang, “Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate,” Nanoscale Res. Lett., vol. 9, pp. 505–510, 2014.
    [19]Wei-Chih Lai, Ya-Yu Yang, and Ray-Hua Horng, “Efficiency improvement of short-period InGaN/GaN multiple-quantum well solar cells With H2 in the GaN cap layer,” IEEE J. Display Technol., vol. 9, pp. 953–956, 2011.
    [20]Y. L. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells,” Appl. Phys. Lett., vol. 100, pp. 161101-1–161101-3, 2012.
    [21]J. J. Wierer, Jr., D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett., vol. 100, pp. 111119-1–111119-3, 2012.
    [22]J. J. Wierer Jr., A. J. Fischer, and D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices,” Appl. Phys. Lett., vol. 96, pp. 051107-1–051107-3, 2010.
    [23]C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. Denbaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett., vol. 98, pp. 243507-1–243507-3, 2011.
    [24]S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS Tunneling contact layer and an ITO transparent contact,” IEEE Photon. Technol. Lett., vol. 16, pp. 1002–1004, 2004.
    [25]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolenk, B. P. Keller, S. P. Denbaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, no. 5, pp. 643-645, 1996.
    [26]P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., vol. 73, pp. 975–977, 1998.
    [27]S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, M. W. Cho, T. Yao, S. K. Hong, H. Y. Lee, S. R. Cho, J. W. Choi, J. H. Choi, J. H. Jang, J. E. Shin, and J. S. Lee, “Origin of forward leakage current in GaN-based light- in GaN-based light-emitting devices,” Appl. Phys. Lett., vol. 89, pp. 132117-1–132117-3 , 2006.
    [28]S. H. Kim, J. P. Shim, H. H. Park, Y. H. Song, H. J. Park, S. R. Jeon, D. S. Lee, S. H. Yang, “Investigation of properties of InGaN-based vertical-type solar cells with emission wavelengths in ultraviolet-blue-green regions,” Journal of Photonics for Energy, vol. 4, pp. 043096-1–043096-8, 2010.
    [29]R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang , “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett., vol. 97, pp. 073115-1–073115-3, 2010.
    [30]M. T. Chu, W. Y. Liao, R. H. Horng, T. Y. Tsai, T. B. Wu, S. P. Liu, M. H.Wu, and R.-M. Lin, “Growth and characterization of p-InGaN/i-InGaN/n-GaN double-heterojunction solar cells on patterned sapphire substrates,” IEEE Electron Device Lett., vol. 32, pp. 922–924, 2011.
    [31]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, pp. 151102-1–151102-3, 2011.
    [32]C. C. Yang, J. K. Sheu, C. H. Kuo, M. S. Huang, S. J. Tu, F. W. Huang, M. L. Lee, Yu-Hsiang Yeh, X. W. Liang, and W. C. Lai, “Improved Power Conversion Efficiency of InGaN Photovoltaic Devices Grown on Patterned Sapphire Substrates,” IEEE Electron Device Lett., vol. 32, pp. 536–538, 2011.
    [33]V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett., vol. 80, pp. 1204–1206, 2002.
    [34]J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett., vol. 101, pp. 181105-1–181105-3, 2012.
    [35]C. Y. Lee, C. M. Yeh, Y. T. Liu, C.M. Fan, C. F. Huang, and Y.-R. Wu, “The optimization study of textured a-Si:H solar cells,” J. Renewable and Sustainable Energy, vol. 6, pp. 023111-1–023111-3, 2014.
    [36]K. Y. Lai, G. J. Lin, Y.-R. Wu, M.-L. Tsai and J.-H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express, vol. 22, pp. A1753-A1760, 2014.

    下載圖示 校內:2017-02-13公開
    校外:2020-02-13公開
    QR CODE