| 研究生: |
吳典嬑 Wu, Tien-Yi |
|---|---|
| 論文名稱: |
自製矽酸鋰在純氧燃燒下去除二氧化碳之研究 Sorption of Carbon Dioxide from Oxy-fuel Combustion by Lithium Orthosilicate |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 二氧化碳捕捉 、碳酸化 、矽酸鋰 、吸收劑 |
| 外文關鍵詞: | CO2 capture, carbonation, lithium orthosilicate, sorbent |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳是目前地球大氣中最重要的人為溫室氣體,伴隨著大量化石燃料的燃燒而產生,累積在大氣中將造成溫度升高、海平面上升等全球氣候異常變遷,因此對二氧化碳進行有效的排放控制為當務之急。純氧燃燒系統是一種二氧化碳濃集技術,排放之高濃度二氧化碳有提高捕獲效果、降低捕獲成本、易改建等優勢,近期應用於化石燃料發電廠獲得高度重視。二氧化碳捕獲技術中,可降低發電成本之高溫乾式淨化系統是未來趨勢,再加上矽酸鋰被視為最有前瞻性之高溫固態吸收劑之一,因此,本研究模擬純氧燃煤之煙道氣條件,以自製矽酸鋰作為吸收劑去除二氧化碳之研究。
本研究以溶膠凝膠法製備矽酸鋰吸收劑,透過X射線繞射儀(XRD)、熱重分析儀(TGA)探討鍛燒程序之影響,得知鍛燒溫度與鍛燒時間分別為700oC及5hr之矽酸鋰結晶構造較純且有較佳之碳酸化效果(88%),因此選定此鍛燒條件以確立製備程序。以反應管模擬固定床,探討操作參數對矽酸鋰去除二氧化碳之實驗可以發現,降低空間流速有助於碳酸化效果,空間流速低於6,000 mL hr-1 g-1時,利用率無顯著提升,相差5%以內;溫度對自製矽酸鋰去除二氧化碳之最佳操作溫度應為700oC左右;水氣參與碳酸化反應對吸收劑之影響,實驗結果可得水氣會降低矽酸鋰之利用率,當水氣濃度大於10%,利用率下降一半以上,推測水氣的存在阻擋活性位置與二氧化碳之反應,導致矽酸鋰利用率顯著降低;二氧化硫的存在亦會降低矽酸鋰之利用率,然而提高二氧化硫之濃度,發現矽酸鋰之利用率有停滯的現象,推測矽酸鋰無法提供更多活性位置進行硫酸化反應。
本文利用XRD、SEM、XPS、FTIR作為輔助實驗進行反應前後矽酸鋰吸收劑變化之分析。由XPS以及FTIR圖譜分析發現在水氣和二氧化硫同時存在下,經碳酸化反應後之產物除了以Li2SiO3與Li2CO3的形式存在,並伴隨著硫化反應產生Li2SO4。且由動力研究發現,第一型衰退模式較適合用來描述此結果,自製矽酸鋰活化能Ea = 51.5 kJ/mol,碰撞因子A = 1.7 × 1013。
Carbon dioxide is the most important anthropogenic greenhouse gases in the atmosphere, accompanied by huge amounts of fossil fuels combustion. CO2 accumulating in the atmosphere will cause global climate changes including temperature increasing and ocean level rising. Hence, the effective control of CO2 emission is imperative. Oxyfuel combustion system is a CO2 concentrated technology, contributing to increasing capture efficiency, decreasing processing cost, and constructing easily. Recently, it is considered a new option for power generation. In CO2 capture technologies, the high temperature carbonation by dry techniques is a trend for related field, and Li4SiO4 is considered a promising sorbent for removing CO2. In the present work, the handmade Li4SiO4 sorbent was used for the capture of carbon dioxide in the simulated oxy-fuel combusted flue gas.
To establish synthesized method, Lithium orthosilicate sorbent was synthesized by sol-gel method and was investigated for the effects of calcination by XRD and TGA. The suitable condition of the sorbent was calcined at 700oC for 5 hours because of the high purity of crystal structure and great carbonated reactivity (88%). In a fixed-bed reactor, the utilization ratio of the sorbent increased as the space velocity decreased before it was lower than 6,000 mL hr-1 g-1; the optimal operating temperature was about 700oC; the effects of adding water vapor on the carbonation of Li4SiO4 were performed. The results indicate that the utilization decreased with increasing water vapor concentration. As the water vapor concentration greater than 10%, the utilization is decreased by half or more. The existence of stream could mask the active sites of sorbent, so consequently the utilization ratio decreased; the effect of Li4SiO4 sorbent in sulfure-containing flue gas showed that the overall utilization went down. However, when increasing the SO2 concentration, the utilization has the phenomenon of stagnation. The results were speculated that Li4SiO4 sorbent couldn’t provide more effective active sites to sulfurization.
The sorbents will be examined for the better understanding of structure change, element composition and crystal transformation by XRD, SEM, XPS, FTIR. From the XPS and FTIR patterns, when the water vaper and H2S existing simultaneously, the carbonated production contains not only Li2SiO3 and Li2SiO3 but also Li2SO4 because of the sulfurization. The kinetic model for the carbonation of Li4SiO4 sorbent with different temperatures of experiment results, the first deactivation model is suitable to describe results.
朱信、曾明宗(1991),「煤炭氣化複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計劃期末報告。
行政院環境保護署(2008),「溫室氣體排放統計」。
吳國光、張育誠、焦鴻文(2012), 「富氧燃燒技術各產業應用現況」,燃燒季刊,第二十一期,頁37-50。
經濟部能源局(2010),「能源供給結構(能源別)及最終能源消費結構(部門別) 」。
陳陵援、吳慧眼(2000),「儀器分析」,三民書局。
陳慧英、黃定加、朱秦億(1999),「溶膠凝膠法在薄膜製備上的應用」,化工技術,第七卷第十一期,頁152-167。
劉毅弘、張文昇、楊昌中、鄭名山、曹芳海、黃昭銘、張慶源(2009), 「二氧化碳新型吸附劑探討」,工業污染防治,第一百一十一期,頁1~21。
蕭敬達(2008),「蛇紋石製氫氧化鎂封存二氧化碳之研究及矽酸鋰型二氧化碳吸收劑的開發」,國立成功大學化學工程研究所碩士論文。
Abanades, J. C., Anthony, E. J., Lu, D. Y., Salvador, C. & Alvarez, D. (2004), “Capture of CO2 from combustion gases in a fluidized bed of CaO”. Aiche Journal, 50(7)pp.1614-1622.
Bretado, M. E., Velderrain, V. G., Gutierrez, D. L., Collins-Martinez, V. & Ortiz, A. L. (2005), “A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent”. Catalysis Today, 107-08pp.863-867.
Coppola, A., Montagnaro, F., Salatino, P. & Scala, F. (2012), “Fluidized bed calcium looping: The effect of SO2 on sorbent attrition and CO2 capture capacity”. Chemical Engineering Journal, 207pp.445-449.
Dou, B. L., Song, Y. C., Liu, Y. G. & Feng, C. (2010), “High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor”. Journal of Hazardous Materials, 183(1-3)pp.759-765.
Duan, Y. H. & Sorescu, D. C. (2010), “CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study”. Journal of Chemical Physics, 133(7).
Essaki, K., Kato, M. & Nakagawa, K. (2006), “CO2 removal at high temperature using packed bed of lithium silicate pellets”. Journal of the Ceramic Society of Japan, 114(1333)pp.739-742.
Essaki, K., Kato, M. & Uemoto, H. (2005), “Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets”. Journal of Materials Science, 40(18)pp.5017-5019.
Essaki, K., Nakagawa, K., Kato, M. & Uemoto, H. (2004), “CO2 absorption by lithium silicate at room temperature”. Journal of Chemical Engineering of Japan, 37(6)pp.772-777.
Fauth, D. J., Frommell, E. A., Hoffman, J. S., Reasbeck, R. P. & Pennline, H. W. (2005), “Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO2 capture”. Fuel Processing Technology, 86(14-15)pp.1503-1521.
Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. & Srivastava, R. D. (2008), “Advancesn in CO(2) capture technology - The US Department of Energy's Carbon Sequestration Program”. International Journal of Greenhouse Gas Control, 2(1)pp.9-20.
Ganguli, M. & Rao, K. J. (1999), “Studies on the effect of Li2SO4 on the structure of lithium borate glasses”. Journal of Physical Chemistry B, 103(6)pp.920-930.
Garg, M. & Quamara, J. K. (2007), “FTIR analysis of high energy heavy ion irradiated kapton-H polyimide”. Indian Journal of Pure & Applied Physics, 45(7)pp.563-568.
Gauer, C. & Heschel, W. (2006), “Doped lithium orthosilicate for absorption of carbon dioxide”. Journal of Materials Science, 41(8)pp.2405-2409.
Gray, M. L., Champagne, K. J., Fauth, D., Baltrus, J. P. & Pennline, H. (2008), “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide”. International Journal of Greenhouse Gas Control, 2(1)pp.3-8.
Gruene, P., Belova, A. G., Yegulalp, T. M., Farrauto, R. J. & Castaldi, M. J. (2011), “Dispersed Calcium Oxide as a Reversible and Efficient CO2-Sorbent at Intermediate Temperatures”. Industrial & Engineering Chemistry Research, 50(7)pp.4042-4049.
Hiemenz, P. C. (1986), “Principles of Colloid and Surface Chemistry”.
Hossain, M. M. & de Lasa, H. I. (2008), “Chemical-looping combustion (CLC) for inherent CO2 separations-a review”. Chemical Engineering Science, 63(18)pp.4433-4451.
Ida, J. & Lin, Y. S. (2003), “Mechanism of high-temperature CO2 sorption on lithium zirconate”. Environmental Science & Technology, 37(9)pp.1999-2004.
Idem, R., Wilson, M., Tontiwachwuthikul, P., Chakma, A., Veawab, A., Aroonwilas, A. & Gelowitz, D. (2006), “Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration”. Industrial & Engineering Chemistry Research, 45(8)pp.2414-2420.
Ji, X. B., Chen, Y. X., Zhao, G. Q., Wang, X. B. & Liu, W. M. (2011), “Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease”. Tribology Letters, 41(1)pp.113-119.
Kato, M. & Nakagawa, K. (2001), “New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO2 absorbent”. Journal of the Ceramic Society of Japan, 109(11)pp.911-914.
Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R. & Hagiwara, Y. (2005), “Novel CO2 absorbents using lithium-containing oxide”. International Journal of Applied Ceramic Technology, 2(6)pp.467-475.
Khomane, R. B., Sharma, B. K., Saha, S. & Kulkarni, B. D. (2006), “Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO2 sequestration”. Chemical Engineering Science, 61(10)pp.3415-3418.
Li, S. Y., Xu, X. L., Shi, X. M., Li, B. C., Zhao, Y. Y., Zhang, H. M., Li, Y. L., Zhao, W., Cui, X. L. & Mao, L. P. (2012), “Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane”. Journal of Power Sources, 217pp.503-508.
Liu, X., Zheng, M. C. & Xie, K. (2011), “Mechanism of lithium storage in Si-O-C composite anodes”. Journal of Power Sources, 196(24)pp.10667-10672.
Lively, R. P., Koros, W. J. & Johnson, J. R. (2012), “Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds”. Chemical Engineering Science, 71pp.97-103.
Mejia-Trejo, V. L., Fregoso-Israel, E. & Pfeiffer, H. (2008), “Textural, Structural, and CO2 Chemisorption Effects Produced on the Lithium Orthosilicate by Its Doping with Sodium (Li4-xNaxSiO4)”. Chemistry of Materials, 20(22)pp.7171-7176.
Mosqueda, H. A., Vazquez, C., Bosch, P. & Pfeiffer, H. (2006), “Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O)”. Chemistry of Materials, 18(9)pp.2307-2310.
Nair, B. N., Yamaguchi, T., Kawamura, H., Nakao, S. I. & Nakagawa, K. (2004), “Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders”. Journal of the American Ceramic Society, 87(1)pp.68-74.
Niemantsverdriet, J. W. (1993), “Spectroscopy in Catalysis”.
Ochoa-Fernandez, E., Zhao, T. J., Ronning, M. & Chen, D. (2009), “Effects of Steam Addition on the Properties of High Temperature Ceramic CO2 Acceptors”. Journal of Environmental Engineering-Asce, 135(6)pp.397-403.
Olajire, A. A. (2010), “CO2 capture and separation technologies for end-of-pipe applications - A review”. Energy, 35(6)pp.2610-2628.
Ortiz-Landeros, J., Martinez-dlCruz, L., Gomez-Yanez, C. & Pfeiffer, H. (2011), “Towards understanding the thermoanalysis of water sorption on lithium orthosilicate (Li4SiO4)”. Thermochimica Acta, 515(1-2)pp.73-78.
Ota, H., Sakata, Y., Wang, X. M., Sasahara, J. & Yasukawa, E. (2004), “Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes - II. Surface chemistry”. Journal of the Electrochemical Society, 151(3)pp.A437-A446.
Pfeiffer, H. & Bosch, P. (2005), “Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7)”. Chemistry of Materials, 17(7)pp.1704-1710.
Pfeiffer, H., Bosch, P. & Bulbulian, S. (1998), “Synthesis of lithium silicates”. Journal of Nuclear Materials, 257(3)pp.309-317.
Philippe, B., Dedryvere, R., Allouche, J., Lindgren, F., Gorgoi, M., Rensmo, H., Gonbeau, D. & Edstrom, K. (2012), “Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy”. Chemistry of Materials, 24(6)pp.1107-1115.
Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F. & Pis, J. J. (2007), “CO2 capture by adsorption with nitrogen enriched carbons”. Fuel, 86(14)pp.2204-2212.
Quinn, R., Kitzhoffer, R. J., Hufton, J. R. & Golden, T. C. (2012), “A High Temperature Lithium Orthosilicate-Based Solid Absorbent for Post Combustion CO2 Capture”. Industrial & Engineering Chemistry Research, 51(27)pp.9320-9327.
Radosz, M., Hu, X. D., Krutkramelis, K. & Shen, Y. Q. (2008), “Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for "Green" energy producers”. Industrial & Engineering Chemistry Research, 47(10)pp.3783-3794.
Rao, A. B. & Rubin, E. S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Paper presented at the Environmental Science & Technology. Retrieved from <Go to ISI>://000178581300037
Ravikrishna, R., Green, R. & Valsaraj, K. (2005), “Polyaphrons as templates for the sol-gel synthesis of macroporous silica”. Journal of Sol-Gel Science and Technology, 34(2)pp.111-122.
Rodriguez-Mosqueda, R. & Pfeiffer, H. (2010), “Thermokinetic Analysis of the CO2 Chemisorption on Li4SiO4 by Using Different Gas Flow Rates and Particle Sizes”. Journal of Physical Chemistry A, 114(13)pp.4535-4541.
Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P. & Kitchin, J. (2012), “The outlook for improved carbon capture technology”. Progress in Energy and Combustion Science, 38(5)pp.630-671.
Salvador, C., Lu, D., Anthony, E. J. & Abanades, J. C. (2003), “Enhancement of CaO for CO2 capture in an FBC environment”. Chemical Engineering Journal, 96(1-3)pp.187-195.
Satterfield, C. N. (1991), Heterogeneous catalysis in industrial practice. 2nd edition.
Seo, Y., Jo, S. H., Ryu, C. K. & Yi, C. K. (2009), “Effect of Reaction Temperature on CO2 Capture Using Potassium-Based Solid Sorbent in Bubbling Fluidized-Bed Reactor”. Journal of Environmental Engineering-Asce, 135(6)pp.473-477.
Shchukarev, A. V. & Korolkov, D. V. (2004), “XPS study of group IA carbonates”. Central European Journal of Chemistry, 2(2)pp.347-362.
Siriwardane, R. V. & Stevens, R. W. (2009), “Novel Regenerable Magnesium Hydroxide Sorbents for CO2 Capture at Warm Gas Temperatures”. Industrial & Engineering Chemistry Research, 48(4)pp.2135-2141.
Sjostrom, S. & Krutka, H. (2010), “Evaluation of solid sorbents as a retrofit technology for CO2 capture”. Fuel, 89(6)pp.1298-1306.
Skoog, D. A., Holler F. J., A., N.T (1998), “Principles of Instaumental Analysis 5E”. Saunders College Publishing.
Sun, L. & Smith, R. (2013), “Rectisol wash process simulation and analysis”. Journal of Cleaner Production, 39pp.321-328.
Syed Bahari Ramadzan Syed Adnan, N. S. M. a. N. K. A. (2011), “Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes”. World Academy of Science, Engineering and Technology, 50pp.670-673.
Tsumura, N., Kuramoto, A., Shimamoto, Y., Aono, H. & Sadaoka, Y. (2005), “Thermal stability of sodium aluminum silicates with and without alkali carbonates”. Journal of the Ceramic Society of Japan, 113(1316)pp.269-274.
Tuinier, M. J., Hamers, H. P. & Annaland, M. V. (2011), “Techno-economic evaluation of cryogenic CO2 capture-A comparison with absorption and membrane technology”. International Journal of Greenhouse Gas Control, 5(6)pp.1559-1565.
Umebayashi, T., Yamaki, T., Itoh, H. & Asai, K. (2002), “Band gap narrowing of titanium dioxide by sulfur doping”. Applied Physics Letters, 81(3)pp.454-456.
Venegas, M. J., Fregoso-Israel, E., Escamilla, R. & Pfeiffer, H. (2007), “Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: Study of the particle size effect”. Industrial & Engineering Chemistry Research, 46(8)pp.2407-2412.
Wang, J. S., Anthony, E. J. & Abanades, J. C. (2004), “Clean and efficient use of petroleum coke for combustion and power generation”. Fuel, 83(10)pp.1341-1348.
Wang, J. S., Manovic, V., Wu, Y. H. & Anthony, E. J. (2010), “A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes”. Applied Energy, 87(4)pp.1453-1458.
Wang, M. H. & Lee, C. G. (2009), “Absorption of CO2 on CaSiO3 at high temperatures”. Energy Conversion and Management, 50(3)pp.636-638.
Xu, H. L., Cheng, W. G., Jin, X. Z., Wang, G. X., Lu, H. X., Wang, H. L., Chen, D. L., Fan, B. B., Hou, T. C. & Zhang, R. (2013), “Effect of the Particle Size of Quartz Powder on the Synthesis and CO2 Absorption Properties of Li4SiO4 at High Temperature”. Industrial & Engineering Chemistry Research, 52(5)pp.1886-1891.
Yamaguchi, T., Niitsuma, T., Nair, B. N. & Nakagawa, K. (2007), “Lithium silicate based membranes for high temperature CO2 separation”. Journal of Membrane Science, 294(1-2)pp.16-21.
Yamauchi, K., Murayama, N. & Shibata, J. (2007), “Absorption and release of carbon dioxide with various metal oxides and hydroxides”. Materials Transactions, 48(10)pp.2739-2742.
Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E. & Wright, I. (2008), “Progress in carbon dioxide separation and capture: A review”. Journal of Environmental Sciences-China, 20(1)pp.14-27.
Zhang, B., Nieuwoudt, M. & Easteal, A. J. (2008), “Sol-gel route to nanocrystalline lithium metasilicate particles”. Journal of the American Ceramic Society, 91(6)pp.1927-1932.
Zhu, B. & Mellander, B. E. (1997), “Proton conduction and diffusion in Li2SO4”. Solid State Ionics, 97(1-4)pp.535-540.