| 研究生: |
高子翔 Kao, Tzu-Hsiang |
|---|---|
| 論文名稱: |
利用自對位黃光微影製程實現偏振無關液晶透鏡陣列與其成像品質優化研究 Study of Optimal Imaging Capabilities of Polarization-Independent Liquid Crystal Lens Arrays Realized with Self-Aligned Photolithography Processes |
| 指導教授: |
許家榮
Sheu, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 偏振無關液晶透鏡陣列 、自對位黃光微影製程 、偏心 |
| 外文關鍵詞: | polarization-independence, hole-patterned electrode, lens arrays, disclination line, tilt angle |
| 相關次數: | 點閱:209 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用自對位黃光微影製程進行偏振無關液晶透鏡陣列的製作與其成像能力之研究,該透鏡陣列結構由兩層正交水平排列的液晶層所構成以使其具有偏振無關的透鏡能力,中間玻璃基板採用自對位圓形孔洞陣列電極。
為了避免液晶透鏡產生不連續線缺陷而影響影像品質,透鏡製作時在其圓形孔洞陣列電極表面塗佈NOA65光學膠並照光固化當做介電層以避免上述問題。所製作之液晶透鏡陣列在電壓操作於6.5~7.5 Vrms時其偏心(Tilt Angle)誤差小於5%,上下層干涉條紋一致且對稱分佈。藉由入射不同線性偏振角度的光束穿越液晶透鏡陣列並觀察其焦聚光點強度大小,以評斷其偏振無關的特性。
另外,根據液晶透鏡陣列不同的製程條件觀察並討論其對透鏡能力的影響進行比較,包括電極種類、玻璃厚度、液晶層電力線分佈、焦距變化等。其中,降低中間層玻璃厚度為0.55 mm發現其MTF數值相較於0.7 mm玻璃厚度有較佳的表現。
A proposed method of self-aligned photo lithography processes to fabricate polarization-independent liquid crystal lens arrays (LCLAs) is demonstrated. The structure of LCLAs is composed of two liquid crystal layers with orthogonal homogeneous alignments with three conductive glass substrates as similar as a sandwich. In order to prevent the disclination line issue occurred in LCLAs to degrade image performance, the additionally coated NOA65 films as dielectric layers on the both conductive surfaces of dual-hole pattern electrodes are used. During electric operations in the range of 6.5~7.5 Vrms, consistent interference patterns are available in both LC layers but the tilt angle error less than 5% exists. The incident light with various directions of linear polarization throught the fabricated LCLAs obviously shows almost same focal intensities. Finally, the polarization-independent LCLAs show image performance via optical obervations with a polarization optics microscope and quantitative evaluations with a software named Quick MTF.
參考文獻
[1] T. Nose, S. Masuda, S. Sato," Optical properties of a liquid crystal microlens with a symmetric electrode structure ", Jpn. J. Appl. Phys, 30.2110. (1991)
[2] Y. Choi, Sin-Doo Lee, " Fabrication of a focal length variable microlens array based on a nematic liquid crystal ", Optical Materials, 21. (2002)
[3] M. Ye, B. Wang, and S. Sato, " Liquid-crystal lens with a focal Length that is variable in a wide range ", Appl. Opt, 43. No. 35 6407. (2004)
[4] Kai-Han Chang, Andrii Varanytsia, and Liang-Chy Chien, "Electrically tunable liquid crystal lens with suppressed axial chromatic aberration ", Appl. Phys. Lett, 111, 033504. (2017)
[5] D. M. Lee, Y. J. Lee, H. B. Park, C. J. Yu & J. H. Kim," Optically isotropic microlens arrays using nanoencapsulated liquid crystals ", Mol. Cryst. Liq. Cryst, 647:44-50. (2017)
[6] Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li , " Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals ", Appl. Phys. Lett, 96,113505. (2010)
[7] C. J. Hsu, C. H. Liao, B. L. Chen, S. Y. Chih, and C. Y. Huang, " Polarization-insensitive liquid crystal microlens array with dual focal modes ", Opt. Express, 22:25925-25930. (2014)
[8] Mao Ye, S. Sato, " Liquid crystal lens of two liquid crystal layers ",Mol. Cryst. Liq. Cryst, Vol. 422. (2004)
[9] Mao Ye, Bin Wang, and Susumu Sato, " Polarization-independent Liquid crystal lens with four liquid crystal layers ", IEEE Photon Technol Lett, Vol. 18, No. 3. (2006)
[10] 松本正一・角田市良, " 液晶之基礎與應用 " , 第八版, 第四章,國立編譯館. 民國九十四年
[11] Toralf Scharf, " Polarized light in liquid crystal and polymers ". Chap. 6, John Wiley & Sons. (2007)
[12] F. C. Frank, " On the theory of liquid crystals ", Faraday Soc, Volume 25. Number 19 (1958)
[13] 張繼鴻, " 發展一可用電壓調控焦距的液晶元件 ", 私立中原大學應用物理研究所碩士論文, 中華民國九十二年
[14] H. W. Ren et al, " Liquid crystal lens with large focal length tunability and low operating voltage ", Opt. Express, 15. 11328. (2007)
[15] M. Ye and S. Sato, " Optical properties of liquid crystal lens of any size ", Jpn. J. Appl. Phys, 41. 571-573. (2002)
[16] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, " Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Master, 21. 643-646. (2002)
[17] M. Ye, B. Wang and S. Sato, " Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field ", Jpn. J. Appl. Phys, 42. 5086-5089. (2003)
[18] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, "Influence of pretilt angle on disclination lines of liquid crystal lens " , Appl. Opt, 43. 4269-4274. (2012)
[19] C. J. Hsu and C. R. Sheu, " Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization ", Opt. Express, 19. 14999-15008. (2011)
[20] M. Ye, B. Wang and S. Sato, " Liquid-crystal lens with a focal length that is variable in a wide range ", Appl. Opt, Vol. 43, No. 35 (2004)
[21] T. Scharf, P. Kipfer, M. Bouvier And J. Grupp, " Diffraction limited liquid crystal microlenses with planar alignment ", Jpn. J. Appl. Phys, 39. P. 6629. (2000)
[22] Deng-Ke Yang, Shin-Tson Wu, " Fundamentals of liquid crystal devices ", Chap. 5, John Wiley & Sons .(2006)
[23] Greer P. B, van Doorn T, " Evaluation of an algorithm for the Assessment of the MTF using an edge method ", Med Phys. (2000)
[24] I. A. Cunningham and A. Fenster, " A method for modulation transfer function determination from edge profiles with correction for finite-element differentiation ", Med Phys, 14. 533. (1987)
[25] M. Estribeau, P. Magnan, " Fast MTF measurement of CMOS imagers using ISO 12233 slantededge methodology ", Proc. SPIE, vol. 5251. pp. 243-252. (2004)
[26] Global Edition Eugene Hecht, " OPTICS ", Ch. 9 Intereference, 5 ed Pearson Education Limited. (2017)
[27] N. Fraval , J. Louis de Bougrenet de la Tocnaye, " Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths " , Appl. Opt, Vol. 49. No. 15. (2010)
[28] M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, " Measurement of optical aberrations of liquid crystal lens ", Jpn. J. Appl. Phys, (2013)
[29] M. Estribeau, P. Magnan, " liquid crystal lens array with hexagonal-hole patterned electrodes ", Jpn. J. Appl. Phys, 43.