| 研究生: |
張竣廷 Chang, Jiun-Ting |
|---|---|
| 論文名稱: |
不同間距與鰭片數量之多鰭片的對流熱傳係數分析 Analysis of Convection Heat Transfer Coefficient of Multi-Fin Heat Sink with Different Fin Spacing and Number |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 雙鰭 、散熱片 、對流熱傳係數 、迴歸分析 |
| 外文關鍵詞: | double fin, convection, heat transfer coefficient, regression analysis |
| 相關次數: | 點閱:148 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是透過實驗與模擬兩種方法對不同間距的雙鰭散熱片施加不同的壓力於強制對流的環境中進行探討,量測到溫度數據以迴歸分析的方式整理出對流熱傳係數,並進一步探討不同數量的鰭片對於鰭片部分熱量散失的影響。藉由調整電源供應器的功率和強制對流的風速,觀測溫度的數值變化並建立兩個變數間的關係,依照得出的關係式去推測環境不同的狀況下,鰭片表面附近的對流熱傳係數。
要知道鰭片上散失的q_fin我們先將鰭片底座的熱損失扣除,依據q_fin和鰭片上的溫度T_fin的線性迴歸方程式把h ̅_fin轉變成T_fin的函數,進而獲得h ̅_fin的極值為β_1/A_fin 變化趨勢則是可以從β_1 T_∞+β_0求得,再利用Nu和Re比較各鰭片之優劣。
根據實驗和模擬結果顯示,間距最寬雙鰭片在設定的六種風速下皆呈現對流熱傳係數最高的現象,間距最窄則都是最低的結果,其餘介於前述兩者間且數值都相當接近,對流熱傳係數的變化不大。
在多鰭片探討鰭片散失之熱量得知:鰭片越多散失的熱量也越多,對流熱傳係數卻不一定隨鰭片數量增加而提升,所以鰭片的散熱不僅要考慮對流熱傳係數,也需要考慮鰭片散失熱量的多寡才周全。
This study focuses on analyzing the convection heat transfer coefficient of a multi-fin heat sink with different fin spacings and numbers in a forced convection environment by the means of experimental and numerical methods.
By adjusting the heating power and speed of the air flow, temperature variation is observed and recorded. In order to know the heat dissipation of the fin, we deduct the heat loss of the fin’s base and bottom block in advance. Then we establish a linear equation between q_fin and T_fin based on regression analysis. According to the obtained relation, we infer the convective heat transfer coefficient near the fin’s surface under different environment conditions.
The experimental and simulation results show that the double-fins with the widest spacing has the highest convective coefficient. The narrowest spacing has the lowest. The others results are between the widest and the narrowest.
When we discuss the heat loss of fins in multi-fin, we find that the more fins there are, the more heat is lost. However, the convective heat transfer coefficient does not necessarily increase as the number of fins increases. As a result, the heat dissipation of fins should not only consider the convective heat transfer coefficient, but it also needs to consider the amount of heat lost by the fins.
[1] C.W. Leung & S.D. Probert, “Heat-exchanger performance: Effect of orientation”, Applied Energy, Vol.33, NO.4, pp.235-252, 1989
[2] Ernani Sartori, “Convention Coefficient Equation for Forced Air Flow over Flat Surface”, Solar Energy, Vol.80, NO.9, pp.1063-1071, 2006
[3] F.C. Zheng et al., “Experimental Study on Heat Transfer Performances of Flat Tube Bank Fin Heat Exchanger Using Four Different Fin Patterns”, Journal of Heat Transfer, Vol.140, NO.4, 2017
[4] Yujie Yang et al, “Analysis of the Fin Performance of Offset Strip Fins Used in Plate-Fin Heat Exchangers”, Journal of Heat Transfer, Vol.138, NO.10, 2016
[5] T.E. Schmidt, “Heat transfer calculations for extended surfaces”, Refri.Eng., pp351-357, 1949
[6] 張文奎, “散熱鰭片擴散熱阻之分析”, 國立清華大學工程與系統科學系碩士論文, 2002
[7] 賴奕亨, “在自然對流下分析矩形鰭片”, 國立成功大學工程科學系碩士論文, 2017
[8] 張凱復, “單鰭鰭片下的熱對流係數分析”, 國立成功大學工程科學系碩士論文, 2018
[9] 王喻暉, “單鰭與雙鰭散熱片的對流熱傳係數分析”, 國立成功大學工程科學系碩士論文, 2019
[10] 范瑞廷, “連續型平板散熱片在不等根部溫度條件下二維散熱片效率之數值模擬”, 國立清華大學動力機械工程學系碩士論文, 2002
[11] 李尉, “應用雙壓電風扇組冷卻柱型散熱片之流場特性研究”, 華梵大學機電工程學系碩士論文, 2016
[12] 廖婉蓉, “應用渦流產生器於柱型散熱片熱傳增強之研究”, 華梵大學機電工程學系碩士論文, 2014
[13] 林謙丞, “傾斜檔板角度對平板型散熱片熱流特性之影響”, 國立臺北科技大學車輛工程系所碩士論文, 2009
[14] 陳冠穎, “強制對流冷卻散熱片熱流特性之量測與分析”, 華梵大學機電工程研究所碩士論文, 2007
[15] 林立揚, “不同性能風扇對熱傳增強鰭片之性能研究”, 國立中央大學能源工程研究所碩士論文, 2018
[16] 林瑞峰, “最佳化理論及協同原理應用於散熱鰭片之設計”, 國立高雄應用科技大學機械工程系碩士論文, 2017
[17] 劉立熙, “根據實驗溫度量測值估算矩形鰭片上之熱傳特性”, 國立成功大學機械工程學系碩士論文, 2007
[18] 柳仲澤, “散熱鰭片模組最佳幾何形狀之設計”, 國立成功大學系統及船舶機電工程學系碩士論文, 2010
[19] 黃兆雄, “低風速狀態下鰭片之熱傳性能增強研究”, 國立中央大學機械工程學系碩士論文, 2013
[20] 劉育承, “反算設計問題於穿孔散熱鰭片孔徑最佳化之研究”, 國立成功大學系統及船舶機電工程學系碩士論文, 2014
[21] 陳順宇&鄭碧娥, “統計學”, pp13-81~13-35, 2000
[22] Joseph E. Shigley & Charles R. Mischke, “Mechanical Engineering Design 6/e”, pp598-603, 1956
[23] Yunus A. Cengel, “Heat Transfer A Practical Approach”, pp250-280, 1998
[24] J. P Holman, “Heat Transfer 7/E”, pp66-70, 1963