簡易檢索 / 詳目顯示

研究生: 李慧君
Lee, Hui-Chun
論文名稱: 以電紡技術製備蠶絲/玻尿酸奈米纖維及其應用之研究
Preparation of Silk Fibroin/Hyaluronic Acid Nanofibers Via Electrospinning Technique and Its Application
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 電紡絲技術蠶絲蛋白玻尿酸MG-63NIH/3T3
外文關鍵詞: electrospinning technique, silk fibroin, hyaluronic acid, MG-63, NIH/3T3
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電紡絲技術製備出蠶絲蛋白、蠶絲蛋白/玻尿酸奈米纖維。由掃描式電子顯微鏡(SEM)可觀察到蠶絲蛋白奈米纖維直徑約為175.4±33.4 nm;另三種不同玻尿酸濃度的蠶絲蛋白/玻尿酸奈米纖維,經SEM觀察到其直徑分別為179.8±36.5、139.9±34及152.7±29.3 nm。經過甲醇處理後的蠶絲蛋白、蠶絲蛋白/玻尿酸奈米纖維可藉由傅立葉紅外線光譜儀(FTIR)得知的確可提升β-sheet結晶態比例;以微差掃描熱卡計(DSC)分析可得知甲醇處理後可將高分子Poly(ethylene oxide)除去;且再經由奈米三維量測儀及奈米薄膜材料試驗機(Nano-indenter)進行材料分析,可知β-sheet結晶態比例的提升的確可使材料機械強度提升。
    最後,本研究以MG-63、NIH/3T3細胞來測試蠶絲蛋白、蠶絲蛋白/玻尿酸奈米纖維的細胞毒性以及細胞增生狀況。從實驗結果得知,本奈米纖維材料不具細胞毒性;而且蠶絲蛋白/玻尿酸奈米纖維基材上增生的細胞量大於蠶絲蛋白奈米纖維基材,證明出添加玻尿酸後有益於細胞的增生。隨著玻尿酸濃度的增加,細胞增生量也是隨之提升的,也再次證明出玻尿酸對細胞增生是呈現正向反應的。

    In the present study, we prepared silk fibroin and silk fibroin/hyaluronic acid nanofibers mats via electrospinning technique. Because of the natural silk fibroin protein and polysaccharide, they have the biocompatibility and biodegradable properties. Fibers with nanoscale diameter provide benefits due to high surface area. Therefore, these electrospun mats have been used in biomedical field in recent years.
    In this study electrospun silk fibroin nanofibers mats with average diameter of 175.4±33.4 nm were measured by scanning electronic microscope (SEM). In addition this study also prepared three different concentrations of hyaluronic acid electrospun mats with average diameter of 179.8 ± 36.5, 139.9 ± 34, and 152.7 ± 29.3 nm, respectively. After methanol treatment, the electrospun mats could hardly dissolve in water, and FTIR showed that the conformation of the electrospun mats was mainly -sheet crystal. The thermal properties and mechanical properties could also be measured by Differential scanning calorimeter (DSC) and Nanoindenter.
    Proliferation of MG-63 and NIH/3T3 on the electrospun mats was studied. From the experimental results we proved that the electrospun mats are non-cytotoxic. We also found that the amount of cell proliferation from the silk fibroin/hyaluronic acid nanofibers mats was higher than that of silk fibroin/hyaluronic acid nanofibers mats. With the increasing hyaluronic acid concentration, the amount of cell proliferation was also increased. We demonstrated that there is a positive response influence on the electrospun mats which the presence of hyaluronic acid.

    中文摘要 I 英文摘要 II 致謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 3 2-1 奈米纖維 3 2-2 電紡絲簡介 4 2-3 電紡絲原理 5 2-4 影響電紡絲之因素 6 2-4.1 溶液參數 6 2-4.2 操作參數 10 2-4.3 環境參數 11 2-5 蛋白質結構 12 2-6 蠶絲(Silk fibroin) 15 2-6.1 天然絲蛋白 15 2-6.2 蠶絲蛋白 16 2-6.3 蠶絲結構 18 2-7 玻尿酸(Hyaluronic acid) 18 2-8 研究方法與目的 19 第三章 實驗部分 21 3-1 實驗藥品 21 3-2 實驗設備 21 3-3 實驗分析用儀器 21 3-4 實驗製備方法與步驟 22 3-4.1 製備蠶絲sponges 22 3-4.2 製備電紡絲溶液 23 3-4.3 電紡絲實驗 23 3-4.4 甲醇處理 23 3-5 細胞培養 24 3-5.1 MG-63細胞 24 3-5.2 NIH/3T3細胞 24 3-5.3 藥品 25 3-5.4 培養液 25 3-5.5 實驗設備 26 3-5.6 實驗步驟 26 第四章 結果與討論 29 4-1 原料分析 29 4-2 Silk fibroin/H2O系統之電紡絲參數探討 32 4-2.1 施加電壓 32 4-2.2 溶液流率 33 4-2.3 工作距離 33 4-3 Silk fibroin /Formic acid系統之電紡絲參數探討 35 4-3.1 施加電壓 35 4-3.2 溶液流率 36 4-3.3 工作距離 37 4-4 Silk fibroin / Hyaluronic acid /Formic acid系統之電紡參數探討 41 4-4.1 固含量比為Silk:HA =10:1系統對各參數的探討 41 4-4.2 固含量比為Silk:HA =10:0.5系統電紡參數的探討 45 4-4.3 固含量比為Silk:HA =10:1.5系統對各參數的探討 48 4-5 甲醇處理 51 4-5.1 FTIR-ATR分析 51 4-5.2 形態分析 58 4-5.3 DSC分析 62 4-5.4 奈米壓痕分析 62 4-6 細胞實驗 64 4-6.1 不同濃度之HA對MG-63細胞培養的結果 69 4-6.2 不同濃度之HA對NIH/3T3細胞培養的結果 75 第五章 結論 80 第六章 參考文獻 81 自述 87

    [1] 吳大誠;杜仲良;高珊, 奈米纖維, 五南圖書出版股份有限公司, 2004.
    [2] S. Chand, Journal of Materials Science 2000, 35, 1303-1313.
    [3] P. P. Tsai, H. Schreuder-Gibson and P. Gibson, Journal of Electrostatics 2002, 54, 333-341.
    [4] A.Bornat, US patent 4689186, 1987.
    [5] A. G.Scopelianos, US patent 5522879, 1996.
    [6] M. D.Stenoien, W. J.Drasler, R. J. Scott, M. L.Jenson, US patent 5866217, 1999.
    [7] E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski and G. L. Bowlin, Journal of Macromolecular Science-Pure and Applied Chemistry 2001, 38, 1231-1243.
    [8] W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan and F. K. Ko, Journal of Biomedical Materials Research 2002, 60, 613-621.
    [9] G. E.Martin, I.D.Cockshott, F. J. T.Fildes, US patent 4044404, 1977.
    [10] G. E.Martin, I.D.Cockshott, F. J. T.Fildes, US patent 4878908, 1989.
    [11] Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Composites Science and Technology 2003, 63, 2223-2253.
    [12] N. Bhardwaj and S. C. Kundu, Biotechnology Advances 28, 325-347.
    [13] A.Formhals, US patent 1975504, 1934.
    [14] A.Formhals, US patent 2160962, 1939.
    [15] A.Formhals, US patent 2187306, 1940.
    [16] A.Formhals, US patent 2323025, 1943.
    [17] A.Formhals, US patent 2349950, 1944.
    [18] G. Taylor, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1969, 313, 453.
    [19] G. Taylor, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1964, 383.
    [20] C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, Polymer 1999, 40, 7397-7407.
    [21] J. Doshi and D. H. Reneker, Journal of Electrostatics 1995, 35, 151-160.
    [22] J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. B. Tan, Polymer 2001, 42, 261-272.
    [23] H. Fong, I. Chun and D. H. Reneker, Polymer 1999, 40, 4585-4592.
    [24] S. H. Tan, R. Inai, M. Kotaki and S. Ramakrishna, Polymer 2005, 46, 6128-6134.
    [25] Q. P. Pham, U. Sharma and A. G. Mikos, Biomacromolecules 2006, 7, 2796-2805.
    [26] C. X. Zhang, X. Y. Yuan, L. L. Wu, Y. Han and J. Sheng, European Polymer Journal 2005, 41, 423-432.
    [27] I. Hayati, A. I. Bailey and T. F. Tadros, Journal of Colloid and Interface Science 1987, 117, 205-221.
    [28] X. H. Zong, K. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao and B. Chu, Polymer 2002, 43, 4403-4412.
    [29] J. A. B. Riddick, W. B.; Sakano, T. K., Organic solvents: physical properties and methods of purification, John Wiley & Sons New York, 1970.
    [30] J. S. Lee, K. H. Choi, H. Do Ghim, S. S. Kim, D. H. Chun, H. Y. Kim and W. S. Lyoo, Journal of Applied Polymer Science 2004, 93, 1638-1646.
    [31] S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, Macromolecules 2002, 35, 8456-8466.
    [32] K. J. Pawlowski, H. L. Belvin, D. L. Raney, J. Su, J. S. Harrison and E. J. Siochi, Polymer 2003, 44, 1309-1314.
    [33] S. L. Zhao, X. H. Wu, L. G. Wang and Y. Huang, Journal of Applied Polymer Science 2004, 91, 242-246.
    [34] C. Mit-uppatham, M. Nithitanakul and P. Supaphol, Macromolecular Chemistry and Physics 2004, 205, 2327-2338.
    [35] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase and J. F. Rabolt, Macromolecules 2004, 37, 573-578.
    [36] A. J. Bruce Alberts, Julian Lewis, Martin Raff, Keith Robers, Peter Walter., Molecular biology of the cell, Garland Science, New York, 2002.
    [37] J. G. Hardy, L. M. Romer and T. R. Scheibel, Polymer 2008, 49, 4309-4327.
    [38] J. G. Hardy and T. R. Scheibel, Progress in Polymer Science 35, 1093-1115.
    [39] J. G. Hardy and T. R. Scheibel, Biochemical Society Transactions 2009, 37, 677-681.
    [40] S. C. Kundu, B. C. Dash, R. Dash and D. L. Kaplan, Progress in Polymer Science 2008, 33, 998-1012.
    [41] S. Putthanarat, R. K. Eby, W. W. Adams and G. F. Liu, Journal of Macromolecular Science-Pure and Applied Chemistry 1996, A33, 899-911.
    [42] S. Putthanarat, N. Stribeck, S. A. Fossey, R. K. Eby and W. W. Adams, Polymer 2000, 41, 7735-7747.
    [43] Z. Z. Shao, F. Vollrath, Nature 2002, 418, 741-741.
    [44] S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo and S. Mizuno, Journal of Biological Chemistry 2000, 275, 40517-40528.
    [45] D. Wilson, R. Valluzzi and D. Kaplan, Biophysical Journal 2000, 78, 2690-2701.
    [46] F. Horkay, P. J. Basser, D. J. Londono, A. M. Hecht and E. Geissler, Journal of Chemical Physics 2009, 131.
    [47] S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer and G. Vunjak-Novakovic, Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 11298-11303.
    [48] G. Lisignoli, S. Cristino, A. Piacentini, N. Zini, D. Noel, C. Jorgensen and A. Facchini, Journal of Biomedical Materials Research Part A 2006, 77A, 497-506.
    [49] R. A. Melick, S. Mercuri and P. J. Bingham, Calcified Tissue Research 1977, 22, 508-510.
    [50] M. C. Yang, N. H. Chi, N. K. Chou, Y. Y. Huang, T. W. Chung, Y. L. Chang, H. C. Liu, M. J. Shieh and S. S. Wang, Biomaterials 31, 854-862.
    [51] M. Garcia-Fuentes, A. J. Meinel, M. Hilbe, L. Meinel and H. P. Merkle, Biomaterials 2009, 30, 5068-5076.
    [52] S. Ramakrishna, An introduction to electrospinning and nanofibers, World Scientific Pub Co Inc, 2005.
    [53] I. C. Um, H. Y. Kweon, K. G. Lee and Y. H. Park, International Journal of Biological Macromolecules 2003, 33, 203-213.
    [54] M. Kang and H. J. Jin, Colloid and Polymer Science 2007, 285, 1163-1167.
    [55] H. J. Jin, S. V. Fridrikh, G. C. Rutledge and D. L. Kaplan, Biomacromolecules 2002, 3, 1233-1239.
    [56] K. H. Zhang, X. M. Mo, C. Huang, C. L. He and H. S. Wang, Journal of Biomedical Materials Research Part A 93A, 976-983.
    [57] M. Wang, H. J. Jin, D. L. Kaplan and G. C. Rutledge, Macromolecules 2004, 37, 6856-6864.
    [58] F. Zhang, B. Q. Zuo, H. X. Zhang and L. Bai, Polymer 2009, 50, 279-285.
    [59] K. H. Zhang, Y. F. Qian, H. S. Wang, L. P. Fan, C. Huang, A. L. Yin and X. M. Mo, Journal of Biomedical Materials Research Part A 95A, 870-881.
    [60] W. H. Park, L. Jeong, D. I. Yoo and S. Hudson, Polymer 2004, 45, 7151-7157.
    [61] M. Okhawilai, R. Rangkupan, S. Kanokpanont and S. Damrongsakkul, International Journal of Biological Macromolecules 46, 544-550.
    [62] G. Yin, Y. Zhang, W. Bao, J. Wu, D. B. Shi, Z. H. Dong and W. G. Fu, Journal of Applied Polymer Science 2009, 111, 1471-1477.
    [63] K. H. Zhang, H. S. Wang, C. Huang, Y. Su, X. M. Mo and Y. Ikada, Journal of Biomedical Materials Research Part A 93A, 984-993.
    [64] S. D. Wang, Y. Z. Zhang, G. B. Yin, H. W. Wang and Z. H. Dong, Journal of Applied Polymer Science 2009, 113, 2675-2682.
    [65] P. Wadbua, B. Promdonkoy, S. Maensiri and S. Siri, International Journal of Biological Macromolecules 46, 493-501.
    [66] S. D. Wang, Y. Z. Zhang, G. B. Yin, H. W. Wang and Z. H. Dong, Materials Science & Engineering C-Materials for Biological Applications 30, 670-676.
    [67] Y. Gui-Bo, Z. You-Zhu, W. Shu-Dong, S. De-Bing, D. Zhi-Hui and F. Wei-Guo, Journal of Biomedical Materials Research Part A 93A, 158-163.
    [68] H. Yoon, S. H. Ahn and G. H. Kim, Macromolecular Rapid Communications 2009, 30, 1632-1637.
    [69] F. Zhang, B. Q. Zuo and L. Bai, Journal of Materials Science 2009, 44, 5682-5687.
    [70] X. H. Zhang, X. L. Wang, V. Keshav, X. Q. Wang, J. T. Johanas, G. G. Leisk and D. L. Kaplan, Biomaterials 2009, 30, 3213-3223.
    [71] X. H. Zhang, C. B. Baughman and D. L. Kaplan, Biomaterials 2008, 29, 2217-2227.
    [72] C. S. Ki, J. W. Kim, J. H. Hyun, K. H. Lee, M. Hattori, D. K. Rah and Y. H. Park, Journal of Applied Polymer Science 2007, 106, 3922-3928.
    [73] C. Meechaisue, P. Wutticharoenmongkol, R. Waraput, T. Huangjing, N. Ketbumrung, P. Pavasant and P. Supaphol, Biomedical Materials 2007, 2, 181-188.
    [74] C. M. Li, C. Vepari, H. J. Jin, H. J. Kim and D. L. Kaplan, Biomaterials 2006, 27, 3115-3124.
    [75] K. E. Park, S. Y. Jung, S. J. Lee, B. M. Min and W. H. Park, International Journal of Biological Macromolecules 2006, 38, 165-173.
    [76] K. H. Kim, L. Jeong, H. N. Park, S. Y. Shin, W. H. Park, S. C. Lee, T. I. Kim, Y. J. Park, Y. J. Seol, Y. M. Lee, Y. Ku, I. C. Rhyu, S. B. Han and C. P. Chung, Journal of Biotechnology 2005, 120, 327-339.
    [77] H. J. Jin, J. S. Chen, V. Karageorgiou, G. H. Altman and D. L. Kaplan, Biomaterials 2004, 25, 1039-1047.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE