| 研究生: |
姜信宏 Jiang, Shin-Hung |
|---|---|
| 論文名稱: |
全球氣候特性與掠食壓力是否可解釋蛺蝶眼斑特徵之變化 EYESPOT TRAITS OF NYMPHALID BUTTERFLIES UNDER CLIMATE CHARACTERISTICS AND PREDATION PRESSURE |
| 指導教授: |
陳一菁
Chen, I-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 巨觀生態學 、眼斑 、掠食壓力 、深度學習 |
| 外文關鍵詞: | Macroecology, Eyespot, Predation pressure, Deep learning |
| 相關次數: | 點閱:152 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鱗翅目翅紋在避敵、溫度適應、以及性擇中皆扮演重要角色;其中,眼斑(eyespot)的複合色彩結構是尤為顯眼的特徵,百年來吸引生物學家探討其功能,以及對物種適存的意義。過去研究指出,眼斑特徵,如數量、面積與顏色對比等,主要用於應付掠食壓力,但非生物因子(如:溫度、雨量與季節性等)可能為其近因(proximate cause)而影響眼斑特徵。然而,多數研究以種內的眼斑變異解釋行為、生理、發生機制與抗掠食者策略,尚無研究探討其巨觀生態特徵,意即在大尺度的掠食壓力與環境梯度下,眼斑是否仍具有跨物種的共同特性,進而反應眼斑適應機制的一般性。本研究蒐集全球開放資料庫The Global Biodiversity Information Facility (GBIF)、 Symbiota Collections of Arthropods Network (SCAN)、 Integrated Digitized Biocollections (iDigBio)與Barcord of Life Data (BOLD)蛺蝶科993種、超過45000筆的數位化標本影像,並利用機器學習中的卷積式類神經網路量化眼斑數量、翅面中最大眼斑面積占比、眼斑總和面積占比、眼斑內顏色對比、眼斑與翅面的顏色對比;再透過階層式分析(Hierarchical partitioning)與結構方程(Structural equation model)廣泛測試溫度、雨量、及其變異度與掠食壓力(以食蟲性鳥類豐富度為指標)等如何解釋全球蛺蝶眼斑特徵。結果顯示,掠食壓力明顯影響眼斑顏色對比,食蟲鳥類豐富度越大,眼斑對比度越強;但對眼斑大小與數量解釋有限。更重要的,大尺度氣候因子主要影響眼斑特徵,溫度季節性、日溫差與最冷季均溫分別解釋眼斑數量、大小和對比的變異,數值越大造成蝶類群聚的眼斑數量越多、對比越強;生產力則可解釋眼斑數量與大小。綜合以上結果,全球蛺蝶科蝶類的眼斑變異主要取決於氣候變異,再來才是掠食壓力;而捕食壓力主要影響眼斑顏色對比度,而非數量或大小。氣候變異對眼斑的影響目前還未有相關機制解釋,本研究提出全球尺度上蛺蝶眼斑特徵隨捕食壓力和氣候因子變化的證據,將為本領域開啟全新的研究視野。
Wing patterns in Lepidopteran play important roles in predation avoidance, thermal adaptation, and sexual selection. Among wing color patterns, the eyespot is a conspicuous trait with a complicated color structure. Eyespots have attracted biologists to explore its functions and fitness for a hundred years. Past studies have pointed out that the eyespot traits, such as number, size, and color contrast, are mainly used to cope with predation pressure. In addition to predation pressure, abiotic factors (such as temperature, precipitation, and seasonality) may affect eyespots as their proximate cause. However, most studies have examined the anti-predator strategy with conspicuous eyespot traits but rarely test the relation between eyespot variation and factors across species at large spatial scale. The eyespot trait variations along predation or environmental gradients are still unknown. This study collected the global open database from The Global Biodiversity Information Facility (GBIF), Symbiota Collections of Arthropods Network (SCAN), Integrated Digitized Biocollections (iDigBio), and Barcorde of Life Data (BOLD) for 993 species in Nymphalidae, more than 45,000 specimen digital images. The convolutional neural network was used to quantify the number of eyespots, the ratio of the max eyespot size, the ratio of total eyespot size, eyespot color contrasts between eyespots and wings, and eyespot color contrasts within eyespots. We then used hierarchical partitioning and structural equation model to examine how temperature, precipitation, productivity, and predation pressure (using the richness of insectivorous birds as an indicator) explain eyespot variation directly and indirectly. We found that predation pressure mainly affected the colour contrast of eyespot, rather than the size and number. Importantly, temperature seasonality, diurnal temperature range, and the mean temperature in the coldest quarter mainly and significantly affected eyespot number, size, and contrast, separately. Our findings indicate that predation pressure effectively selected for high contrast of eyespots across wide variety of Nymphalid butterflies. However, climate and its variation play more important roles in determine eyespot variations at global scale and the underlying mechanisms are to be explored. Our study provides evidence of how eyespots vary with predation pressure and climate factors globally and paves new avenue of related studies in macroecology of eyespot variation.
Arbuckle, J. L. (2014). Amos (version 23.0) [computer program]. Chicago: IBM SpSS.
Arenas, L. M., Troscianko, J., & Stevens, M. (2014). Color contrast and stability as key elements for effective warning signals. Frontiers in Ecology and Evolution, 2, 25-25.
Beldade, P., & Monteiro, A. (2021). Eco-evo-devo advances with butterfly eyespots. Current Opinion in Genetics & Development, 69, 6-13.
Bhardwaj, S., Jolander, L. S.-H., Wenk, M. R., Oliver, J. C., Nijhout, H. F., & Monteiro, A. (2020). Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots. Elife, 9, e49544.
Blest, A. D. (1957). The function of eyespot patterns in the Lepidoptera. Behaviour, 11(2-3), 209-258.
Brakefield, P. M. (1997). Phenotypic plasticity and fluctuating asymmetry as responses to environmental stress in the butterfly Bicyclus anynana. In Environmental stress, adaptation and evolution (pp. 65-78). Birkhäuser, Basel.
Brakefield, P. M., & Mazzotta, V. (1995). Matching field and laboratory environments: effects of neglecting daily temperature variation on insect reaction norms. Journal of Evolutionary Biology, 8(5), 559-573.
Brakefield, P. M., & Reitsma, N. (1991). Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecological Entomology, 16(3), 291-303.
Brattström, O., Aduse-Poku, K., van Bergen, E., French, V., & Brakefield, P. M. (2020). A release from developmental bias accelerates morphological diversification in butterfly eyespots. Proceedings of the National Academy of Sciences, 117(44), 27474-27480.
Breuker, C. J., & Brakefield, P. M. (2002). Female choice depends on size but not symmetry of dorsal eyespots in the butterfly Bicyclus anynana. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1497), 1233-1239.
Brunetti, C. R., Selegue, J. E., Monteiro, A., French, V., Brakefield, P. M., & Carroll, S. B. (2001). The generation and diversification of butterfly eyespot color patterns. Current Biology, 11(20), 1578-1585.
Bryman, A., & Cramer, D. (2011). Quantitative data analysis with IBM SPSS 17, 18 and 19: Routledge, 10-170.
Carroll SB, Gates J, Keys D, Paddock SW, Panganiban GF, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265:109–114
Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
Cott, H. B. (1940). Adaptive coloration in animals. Methuen, London.
Dalrymple, R. L., Flores‐Moreno, H., Kemp, D. J., White, T. E., Laffan, S. W., Hemmings, F. A., Moles, A. T. (2018). Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecological Monographs, 88(2), 204-224.
De Jong, M. A., Kesbeke, F. M., Brakefield, P. M., & Zwaan, B. J. (2010). Geographic variation in thermal plasticity of life history and wing pattern in Bicyclus anynana. Climate Research, 43(1-2), 91-102.
Debat, V., Chazot, N., Jarosson, S., Blandin, P., & Llaurens, V. (2020). What drives the diversification of eyespots in Morpho butterflies? Disentangling developmental and selective constraints from neutral evolution. Frontiers in Ecology and Evolution, 8, 112.
Del Hoyo, J., Del Hoyo, J., Elliott, A., & Sargatal, J. (1992). Handbook of the birds of the world (Vol. 1, No. 8). Barcelona: Lynx edicions.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
Grether, G. F., Hudon, J., & Millie, D. F. (1999). Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1426), 1317-1322.
Halali, D., Krishna, A., Kodandaramaiah, U., & Molleman, F. (2019). Lizards as predators of butterflies: shape of wing damage and effects of eyespots. The Journal of the Lepidopterists' Society, 73(2), 78-86.
Ham, A., Ihalainen, E., Lindström, L., & Mappes, J. (2006). Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behavioral Ecology and Sociobiology, 60(4), 482-491.
Hargreaves, A. L., Suárez, E., Mehltreter, K., Myers-Smith, I., Vanderplank, S. E., Slinn, H. L., . . . Muñoz, J. (2019). Seed predation increases from the Arctic to the Equator and from high to low elevations. Science advances, 5(2), eaau4403.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
Ho, S., Schachat, S. R., Piel, W. H., & Monteiro, A. (2016). Attack risk for butterflies changes with eyespot number and size. Royal Society open science, 3(1), 150614
Hsieh, T., Ma, K., & Chao, A. (2014). iNEXT: An R package for interpolation and extrapolation in measuring species diversity. Unpublished manuscript. http://chao. stat. nthu. edu. tw/blog/software-download.
Jenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, 110(28), E2602-E2610.
Kemp, D. J. (2008). Resource‐mediated condition dependence in sexually dichromatic butterfly wing coloration. Evolution: international journal of organic evolution, 62(9), 2346-2358.
Kodandaramaiah, U. (2011). The evolutionary significance of butterfly eyespots. Behavioral Ecology, 22(6), 1264-1271.
Kooi, R. E., Brakefield, P. M., & William, E. M. (1996). Effects of food plant on phenotypic plasticity in the tropical butterfly Bicyclus anynana. In Proceedings of the 9th International Symposium on Insect-Plant Relationships. Springer, Dordrecht. (pp. 149-151).
Kooi, R. E. (1995). The effect of food plant quality on wing pattern induction in the tropical butterfly Bicyclus anynana (Satyrinae). Sommeijer MJ, Francke PJ (eds), 107-112.
Liu, X., Wang, Z., Huang, C., Li, M., Bibi, F., Zhou, S., & Nakamura, A. (2020). Ant assemblage composition explains high predation pressure on artificial caterpillars during early night. Ecological Entomology, 45(3), 547-554.
Lyytinen, A., Alatalo, R. V., Lindström, L., & Mappes, J. (2001). Can ultraviolet cues function as aposematic signals? Behavioral Ecology, 12(1), 65-70.
Lyytinen, A., Brakefield, P. M., Lindström, L., & Mappes, J. (2004). Does predation maintain eyespot plasticity in Bicyclus anynana?. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1536), 279-283.
McGraw, K. J. (2003). Melanins, metals, and mate quality. Oikos, 402-406.
Merilaita, S., Vallin, A., Kodandaramaiah, U., Dimitrova, M., Ruuskanen, S., & Laaksonen, T. (2011). Number of eyespots and their intimidating effect on naive predators in the peacock butterfly. Behavioral Ecology, 22(6), 1326-1331.
Monteiro, A. (2015). Origin, development, and evolution of butterfly eyespots. Annual review of entomology, 60, 253-271.
Monteiro, A. (2008). Alternative models for the evolution of eyespots and of serial homology on lepidopteran wings. Bioessays, 30(4), 358-366.
Nokelainen, O., van Bergen, E., Ripley, B. S., & Brakefield, P. M. (2018). Adaptation of a tropical butterfly to a temperate climate. Biological Journal of the Linnean Society, 123(2), 279-289.
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., ... & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. science, 344(6187).
Poulton, E. B. (1890). The colours of animals: their meaning and use, especially considered in the case of insects. Daniel Appleton.
Rajpurohit, S., Parkash, R., & Ramniwas, S. (2008). Body melanization and its adaptive role in thermoregulation and tolerance against desiccating conditions in drosophilids. Entomological Research, 38(1), 49-60.
Reed RD, Serfas MS (2004) Butterfly wing pattern evolution is associated with changes in a notch/ distal-less temporal pattern formation process. Curr Biol 14:1159–1166
Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6), 1137-1149.
Reynolds, P. L., et al. (2018). Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology, 99(1), 29-35.
Robertson, K. A., & Monteiro, A. (2005). Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proceedings of the Royal Society B: Biological Sciences, 272(1572), 1541-1546.
Roskam, J. C., & Brakefield, P. M. (1999). Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues. Biological Journal of the Linnean Society, 66(3), 345-356.
Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A. & Slade, E. M. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356(6339), 742-744..
Sang, A., & Teder, T. (2011). Dragonflies cause spatial and temporal heterogeneity in habitat quality for butterflies. Insect Conservation and Diversity, 4(4), 257-264.
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions?. Annual Review of Ecology, Evolution, and Systematics, 40, 245-269.
Stevens, M. (2005). The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biological Reviews, 80(4), 573-588.
Stevens, M., Hardman, C. J., & Stubbins, C. L. (2008). Conspicuousness, not eye mimicry, makes “eyespots” effective antipredator signals. Behavioral Ecology, 19(3), 525-531.
Stevens, M., Hopkins, E., Hinde, W., Adcock, A., Connolly, Y., Troscianko, T., & Cuthill, I. C. (2007). Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Animal Behaviour, 74(5), 1215-1227.
Stevens, M., & Ruxton, G. D. (2012). Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 417-426.
Tiede, Y., Schlautmann, J., Donoso, D. A., Wallis, C. I., Bendix, J., Brandl, R., & Farwig, N. (2017). Ants as indicators of environmental change and ecosystem processes. Ecological Indicators, 83, 527-537.
Oliver, J. C., Tong, X. L., Gall, L. F., Piel, W. H., & Monteiro, A. (2012). A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet, 8(8), e1002893.
Otaki, J. M. (2011). Generation of butterfly wing eyespot patterns: a model for morphological determination of eyespot and parafocal element. Zoological science, 28(11), 817-827.
Vlieger, L., & Brakefield, P. M. (2007). The deflection hypothesis: eyespots on the margins of butterfly wings do not influence predation by lizards. Biological Journal of the Linnean Society, 92(4), 661-667.
Walsh, C., Mac Nally, R., & Walsh, M. C. (2003). The hier. part package. Hierarchical Partitioning. R project for statistical computing. URL: http://cran. r-project. org.
Wijngaarden, P., Koch, P., & Brakefield, P. (2002). Artificial selection on the shape of reaction norms for eyespot size in the butterfly Bicyclus anynana: direct and correlated responses. Journal of Evolutionary Biology, 15(2), 290-300.
Wu, S., Chang, C. M., Mai, G. S., Rubenstein, D. R., Yang, C. M., Huang, Y. T., ... & Shen, S. F. (2019). Artificial intelligence reveals environmental constraints on colour diversity in insects. Nature communications, 10(1), 1-9.
Zhang L, Reed RD (2016) Genome editing in butterflies reveals that spalt promotes and distal-less represses eyespot colour patterns. Nat Commun 7:11769
校內:2026-01-01公開