| 研究生: |
辜于娟 Gu, Yu-Juan |
|---|---|
| 論文名稱: |
一種能夠單獨導鉀離子的金屬有機骨架 A Single Potassium-Ion Conducting Metal–Organic Framework |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鉀離子電池 、固態電解質 、磺酸基 、離子遷移數 、以鋯為基底的金屬有機骨架 |
| 外文關鍵詞: | potassium-ion battery, solid-state electrolyte, sulfonate, transference number, zirconium-based MOF |
| 相關次數: | 點閱:61 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前生活中常見的鋰離子電池,由於成本高、安全性備受質疑,近幾年來有相當多的文獻試圖找尋解決辦法。成本高是因為鋰在地表上的含量非常稀少,所以物性相近、含量多且在電解質中離子移動能力優秀的鉀成為本研究的選擇。安全性問題則是因為液態電解質具有漏液、易燃的可能性,且無法阻擋樹枝狀結晶的產生,固態電解質可直接避免這些問題,因此便受到了相當程度的關注。
金屬有機骨架(MOFs)由於其規律的孔道、多數具不導電的性質,以及可依實驗需求用各種配體修飾的特性,在近十年來成為了固態電解質常運用的材料。本研究藉由溶劑輔助配體結合法(SALI)將4-磺基酸單鉀鹽固定在以鋯為基底的金屬有機骨架MOF-808當中,並加入碳酸丙烯酯使金屬有機骨架內的孔道充滿著液態電解質,形成陰離子固定在鋯節點上,鉀離子則能在孔道中進行移動的結構。由實驗結果可知,比較其他文獻的固態電解質,此種結構能帶來相同範圍的導離度、相對低的活化能,以及特別高的鉀離子遷移數,並且具有相當好的長時間穩定性。
In this study, the 4-sulfobenzoic acid potassium salt is post-synthetically immobilized on the hexa-zirconium nodes of a zirconium-based MOF, MOF-808, by the solution-phase solvent-assisted ligand incorporation approach. With all the sulfonate-based anions firmly immobilized within the rigid framework of MOF-808 along with mobile potassium ions presented in the resulting material (MOF-808-SO3K), the MOF-808-SO3K-based solid-state electrolyte achieves an ionic conductivity of 3.1 × 10−5 S/cm at 303 K, a low activation energy of 0.32 eV, and an ultrahigh transference number of 0.95 for potassium ions. The long-term stability of MOF-808-SO3K during the charge-discharge processes with the potassium metal is also investigated.
[1] L. Lakatos, G. Hevessy, J. Kovács, Advantages and disadvantages of solar energy and wind-power utilization. World Futures, 67, 395-408, 2011.
[2] P.A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng., 3, 1167990, 2016.
[3] T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci., 11, 2696-2767, 2018.
[4] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science, 334, 928, 2011.
[5] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012.
[6] Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power Sources, 100, 101-106, 2001.
[7] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367, 2001.
[8] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater., 22, 587-603, 2010.
[9] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 7, 19-29, 2015.
[10] P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem. Int. Ed., 57, 102-120, 2018.
[11] K.K. TUREKIAN, K.H. WEDEPOHL, Distribution of the elements in some major units of the Earth's crust. GSA Bulletin, 72, 175-192, 1961.
[12] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev., 114, 11636-11682, 2014.
[13] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull., 15, 783-789, 1980.
[14] J.-J. Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller, Comportement electrochimique des phases NaxCoO2. Mater. Res. Bull., 15, 1797-1804, 1980.
[15] A. Eftekhari, Potassium secondary cell based on Prussian blue cathode. J. Power Sources, 126, 221-228, 2004.
[16] B.W. Byles, N.K.R. Palapati, A. Subramanian, E. Pomerantseva, The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries. APL Mater., 4, 046108, 2016.
[17] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 32, 751-767, 1976.
[18] Y. Matsuda, H. Nakashima, M. Morita, Y. Takasu, Behavior of some ions in mixed organic electrolytes of high energy density batteries. J. Electrochem. Soc., 128, 2552-2556, 1981.
[19] M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc., 164, A54-A60, 2016.
[20] K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Towards K-ion and Na-ion batteries as “Beyond Li-ion”. Chem. Rec., 18, 459-479, 2018.
[21] L. Wang, J. Yang, J. Li, T. Chen, S. Chen, Z. Wu, J. Qiu, B. Wang, P. Gao, X. Niu, H. Li, Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources, 409, 24-30, 2019.
[22] X. Wu, D.P. Leonard, X. Ji, Emerging non-aqueous potassium-ion batteries: Challenges and opportunities. Chem. Mater., 29, 5031-5042, 2017.
[23] W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv., 5, eaav7412, 2019.
[24] J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries. J. Power Sources, 282, 299-322, 2015.
[25] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 7, 513-537, 2014.
[26] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev., 117, 10403-10473, 2017.
[27] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol., 12, 194-206, 2017.
[28] P.G. Bruce, J. Evans, C.A. Vincent, Conductivity and transference number measurements on polymer electrolytes. Solid State Ion., 28-30, 918-922, 1988.
[29] M. Doyle, T.F. Fuller, J. Newman, The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta, 39, 2073-2081, 1994.
[30] Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L.A. Archer, Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater., 5, 1402073, 2015.
[31] S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao, H. Zhou, High-power Li-metal anode enabled by Metal-Organic Framework modified electrolyte. Joule, 2, 2117-2132, 2018.
[32] S. Kitagawa, R. Kitaura, S.-i. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004.
[33] G. Férey, Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37, 191-214, 2008.
[34] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of Metal-Organic Frameworks. Science, 341, 1230444, 2013.
[35] K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline Metal–Organic Frameworks. ACS Nano, 8, 7451-7457, 2014.
[36] R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal–Organic Framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano, 11, 5293-5308, 2017.
[37] Z.-X. Cai, Z.-L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from Metal–Organic Frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater., 31, 1804903, 2019.
[38] V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja, K. Vikrant, K.-H. Kim, U.K. Tiwari, A. Deep, Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord. Chem. Rev., 393, 48-78, 2019.
[39] Y. Takashima, V.M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Molecular decoding using luminescence from an entangled porous framework. Nat. Commun., 2, 168, 2011.
[40] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–Organic Framework materials as chemical sensors. Chem. Rev., 112, 1105-1125, 2012.
[41] M. Meilikhov, S. Furukawa, K. Hirai, R.A. Fischer, S. Kitagawa, Binary janus porous coordination polymer coatings for sensor devices with tunable analyte affinity. Angew. Chem. Int. Ed., 52, 341-345, 2013.
[42] L. Cui, J. Wu, J. Li, H. Ju, Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic Metal–Organic Framework. Anal. Chem., 87, 10635-10641, 2015.
[43] M.G. Campbell, M. Dincă, Metal–Organic Frameworks as active materials in electronic sensor devices. Sensors, 17, 1108, 2017.
[44] X. Lian, B. Yan, Phosphonate MOFs composite as off–on fluorescent sensor for detecting purine metabolite uric acid and diagnosing hyperuricuria. Inorg. Chem., 56, 6802-6808, 2017.
[45] J.-R. Li, J. Sculley, H.-C. Zhou, Metal–Organic Frameworks for separations. Chem. Rev., 112, 869-932, 2012.
[46] T.M. McDonald, J.A. Mason, X. Kong, E.D. Bloch, D. Gygi, A. Dani, V. Crocellà, F. Giordanino, S.O. Odoh, W.S. Drisdell, B. Vlaisavljevich, A.L. Dzubak, R. Poloni, S.K. Schnell, N. Planas, K. Lee, T. Pascal, L.F. Wan, D. Prendergast, J.B. Neaton, B. Smit, J.B. Kortright, L. Gagliardi, S. Bordiga, J.A. Reimer, J.R. Long, Cooperative insertion of CO2 in diamine-appended Metal-Organic Frameworks. Nature, 519, 303-308, 2015.
[47] A. Cadiau, K. Adil, P.M. Bhatt, Y. Belmabkhout, M. Eddaoudi, A Metal-Organic Framework–based splitter for separating propylene from propane. Science, 353, 137, 2016.
[48] X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M.J. Zaworotko, B. Chen, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 353, 141, 2016.
[49] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–Organic Framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009.
[50] L. Ma, C. Abney, W. Lin, Enantioselective catalysis with homochiral Metal–Organic Frameworks. Chem. Soc. Rev., 38, 1248-1256, 2009.
[51] Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Metal–Organic Framework-derived porous materials for catalysis. Coord. Chem. Rev., 362, 1-23, 2018.
[52] M.B. Majewski, A.W. Peters, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Metal–Organic Frameworks as platform materials for solar fuels catalysis. ACS Energy Lett., 3, 598-611, 2018.
[53] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of Metal–Organic Frameworks. Nat. Rev. Mater., 1, 15018, 2016.
[54] S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–Organic Framework-based separator for lithium–sulfur batteries. Nat. Energy, 1, 16094, 2016.
[55] R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia, Y. Zhao, R. Zou, Metal–Organic Frameworks for solid-state electrolytes. Energy Environ. Sci., 13, 2386-2403, 2020.
[56] B.M. Wiers, M.-L. Foo, N.P. Balsara, J.R. Long, A solid lithium electrolyte via addition of lithium isopropoxide to a Metal–Organic Framework with open metal sites. J. Am. Chem. Soc., 133, 14522-14525, 2011.
[57] R. Ameloot, M. Aubrey, B.M. Wiers, A.P. Gómora-Figueroa, S.N. Patel, N.P. Balsara, J.R. Long, Ionic conductivity in the Metal–Organic Framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chem. Eur. J., 19, 5533-5536, 2013.
[58] S.S. Park, Y. Tulchinsky, M. Dincă, Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate Metal–Organic Framework. J. Am. Chem. Soc., 139, 13260-13263, 2017.
[59] W. Xu, X. Pei, C.S. Diercks, H. Lyu, Z. Ji, O.M. Yaghi, A Metal–Organic Framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc., 141, 17522-17526, 2019.
[60] H. Yang, B. Liu, J. Bright, S. Kasani, J. Yang, X. Zhang, N. Wu, A single-ion conducting UiO-66 Metal–Organic Framework electrolyte for all-solid-state lithium batteries. ACS Appl. Energy Mater., 3, 4007-4013, 2020.
[61] D. Li, J. Wang, S. Guo, Y. Xiao, Q. Zeng, W. He, L. Gan, Q. Zhang, S. Huang, Molecular-scale interface engineering of Metal–Organic Frameworks toward ion transport enables high-performance solid lithium metal battery. Adv. Funct. Mater., 30, 2003945, 2020.
[62] R. Zettl, S. Lunghammer, B. Gadermaier, A. Boulaoued, P. Johansson, H.M.R. Wilkening, I. Hanzu, High Li+ and Na+ conductivity in new hybrid solid electrolytes based on the porous MIL-121 Metal Organic Framework. Adv. Energy Mater., 11, 2003542, 2021.
[63] Q. Zhang, Y. Xiao, Q. Li, J. Wang, S. Guo, X. Li, Y. Ouyang, Q. Zeng, W. He, S. Huang, Design of thiol–lithium ion interaction in Metal–Organic Framework for high-performance quasi-solid lithium metal batteries. Dalton Trans., 50, 2928-2935, 2021.
[64] P.V. Wright, An anomalous transition to a lower activation energy for dc electrical conduction above the glass-transition temperature. J. Polym. Sci. Polym. Phys. Ed., 14, 955-957, 1976.
[65] M. Armand, J. Chabagno, M. Duclot, Fast ion transport in solids. Eds. Vashishta, P., Mundy, JN & Shenoy, G. K, North Holland, Amsterdan, 52, 1979.
[66] Z. Stoeva, I. Martin-Litas, E. Staunton, Y.G. Andreev, P.G. Bruce, Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J. Am. Chem. Soc., 125, 4619-4626, 2003.
[67] C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang, J. Liu, Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized Metal-Organic Framework. J. Power Sources, 240, 653-658, 2013.
[68] R. Senthil Kumar, M. Raja, M. Anbu Kulandainathan, A. Manuel Stephan, Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries. RSC Adv., 4, 26171-26175, 2014.
[69] K. Zhu, Y. Liu, J. Liu, A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv., 4, 42278-42284, 2014.
[70] C. Gerbaldi, J.R. Nair, M.A. Kulandainathan, R.S. Kumar, C. Ferrara, P. Mustarelli, A.M. Stephan, Innovative high performing Metal Organic Framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A, 2, 9948-9954, 2014.
[71] N. Angulakshmi, R.S. Kumar, M.A. Kulandainathan, A.M. Stephan, Composite polymer electrolytes encompassing Metal Organic Frame Works: A new strategy for all-solid-state lithium batteries. J. Phys. Chem. C, 118, 24240-24247, 2014.
[72] S. Suriyakumar, M. Kanagaraj, N. Angulakshmi, M. Kathiresan, K.S. Nahm, M. Walkowiak, K. Wasiński, P. Półrolniczak, A.M. Stephan, Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing Metal Organic Frameworks. RSC Adv., 6, 97180-97186, 2016.
[73] D.E. Mathew, S. Gopi, M. Kathiresan, A.M. Stephan, S. Thomas, Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid- state lithium batteries. Electrochim. Acta, 319, 189-200, 2019.
[74] Z. Zhang, Y. Huang, H. Gao, J. Hang, C. Li, P. Liu, MOF-derived ionic conductor enhancing polymer electrolytes with superior electrochemical performances for all solid lithium metal batteries. J. Membr. Sci., 598, 117800, 2020.
[75] Q. Han, S. Wang, Z. Jiang, X. Hu, H. Wang, Composite polymer electrolyte incorporating Metal–Organic Framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces, 12, 20514-20521, 2020.
[76] J. Yang, L. Shao, X. Wang, Y. Yang, Z. Tian, W. Chen, G. Zhang, C. Shen, Effect of intermolecular interactions on the performance of UiO-66-laden solid composite polymer electrolytes. J. Alloys Compd., 845, 155179, 2020.
[77] S. Suriyakumar, S. Gopi, M. Kathiresan, S. Bose, E.B. Gowd, J.R. Nair, N. Angulakshmi, G. Meligrana, F. Bella, C. Gerbaldi, A.M. Stephan, Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim. Acta, 285, 355-364, 2018.
[78] Z. Ge, J. Li, J. Liu, Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO-NaCF3SO3-MIL-53(Al) solid electrolyte. Ionics, 26, 1787-1795, 2020.
[79] K. Fujie, R. Ikeda, K. Otsubo, T. Yamada, H. Kitagawa, Lithium ion diffusion in a Metal–Organic Framework mediated by an ionic liquid. Chem. Mater., 27, 7355-7361, 2015.
[80] A. Singh, R. Vedarajan, N. Matsumi, Modified Metal Organic Frameworks (MOFs)/ionic liquid matrices for efficient charge storage. J. Electrochem. Soc., 164, H5169, 2017.
[81] Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu, H. Chen, F. Pan, A Metal–Organic-Framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater., 30, 1704436, 2018.
[82] Z. Wang, Z. Wang, L. Yang, H. Wang, Y. Song, L. Han, K. Yang, J. Hu, H. Chen, F. Pan, Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy, 49, 580-587, 2018.
[83] N. Chen, Y. Li, Y. Dai, W. Qu, Y. Xing, Y. Ye, Z. Wen, C. Guo, F. Wu, R. Chen, A Li+ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. J. Mater. Chem. A, 7, 9530-9536, 2019.
[84] J.-F. Wu, X. Guo, Nanostructured Metal–Organic Framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries. Small, 15, 1804413, 2019.
[85] Q. Zhang, D. Li, J. Wang, S. Guo, W. Zhang, D. Chen, Q. Li, X. Rui, L. Gan, S. Huang, Multiscale optimization of Li-ion diffusion in solid lithium metal batteries via ion conductive metal–organic frameworks. Nanoscale, 12, 6976-6982, 2020.
[86] M. Li, T. Chen, S. Song, Y. Li, J. Bae, HKUST-1@IL-Li solid-state electrolyte with 3D ionic channels and enhanced fast Li+ transport for lithium metal batteries at high temperature. Nanomaterials, 11, 736, 2021.
[87] Q. Xu, F. Yang, X. Zhang, J.-R. Li, J.-F. Chen, S. Zhang, Combining ionic liquids and sodium salts into Metal-Organic Framework for high-performance ionic conduction. ChemElectroChem, 7, 183-190, 2020.
[88] V. Nozari, C. Calahoo, J.M. Tuffnell, P. Adelhelm, K. Wondraczek, S.E. Dutton, T.D. Bennett, L. Wondraczek, Sodium ion conductivity in superionic IL-impregnated Metal-Organic Frameworks: Enhancing stability through structural disorder. Sci. Rep., 10, 3532, 2020.
[89] P. Deria, J.E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R.Q. Snurr, J.T. Hupp, O.K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc., 135, 16801-16804, 2013.
[90] H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous Metal–Organic Frameworks and related materials. J. Am. Chem. Soc., 136, 4369-4381, 2014.
[91] S. Fischer, J. Roeser, T.C. Lin, R.H. DeBlock, J. Lau, B.S. Dunn, F. Hoffmann, M. Fröba, A. Thomas, S.H. Tolbert, A Metal–Organic Framework with tetrahedral aluminate sites as a single-ion Li+ solid electrolyte. Angew. Chem. Int., 57, 16683-16687, 2018.
[92] D.K. Panda, K. Maity, A. Palukoshka, F. Ibrahim, S. Saha, Li+ ion-conducting sulfonate-based neutral Metal–Organic Framework. ACS Sustainable Chem. Eng., 7, 4619-4624, 2019.
[93] F. Zhu, H. Bao, X. Wu, Y. Tao, C. Qin, Z. Su, Z. Kang, High-performance Metal–Organic Framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl. Mater. Interfaces, 11, 43206-43213, 2019.
[94] E.M. Miner, S.S. Park, M. Dincă, High Li+ and Mg2+ conductivity in a Cu-azolate Metal–Organic Framework. J. Am. Chem. Soc., 141, 4422-4427, 2019.
[95] A.J. Bard, L.R. Faulkner, Fundamentals and applications. John Wiley & Sons: New York, 2001.
[96] J. Zheng, M. Gu, H. Chen, P. Meduri, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. J. Mater. Chem. A, 1, 8464-8470, 2013.
[97] P.G. Bruce, C.A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem., 225, 1-17, 1987.
[98] J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 28, 2324-2328, 1987.
[99] P.G. Bruce, J. Evans, C.A. Vincent, Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics, 28-30, 918-922, 1988.
[100] G. Bieker, M. Winter, P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys., 17, 8670-8679, 2015.
[101] A.I. Bhatt, P. Kao, A.S. Best, A.F. Hollenkamp, Understanding the morphological changes of lithium surfaces during cycling in electrolyte solutions of lithium salts in an ionic liquid. J. Electrochem. Soc., 160, A1171-A1180, 2013.
[102] K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A, 5, 11671-11681, 2017.
[103] J.-H. Li, Y.-C. Chen, Y.-S. Wang, W.H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song, C.-W. Kung, Electrochemical evolution of pore-confined metallic molybdenum in a Metal–Organic Framework (MOF) for all-MOF-based pseudocapacitors. ACS Appl. Energy Mater., 3, 6258-6267, 2020.
[104] K.-i. Otake, J. Ye, M. Mandal, T. Islamoglu, C.T. Buru, J.T. Hupp, M. Delferro, D.G. Truhlar, C.J. Cramer, O.K. Farha, Enhanced activity of heterogeneous Pd(II) catalysts on acid-functionalized Metal–Organic Frameworks. ACS Catal., 9, 5383-5390, 2019.
[105] Y.-C. Chen, W.-H. Chiang, D. Kurniawan, P.-C. Yeh, K.-i. Otake, C.-W. Kung, Impregnation of graphene quantum dots into a Metal–Organic Framework to render increased electrical conductivity and activity for electrochemical sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019.
[106] Y.-S. Wang, Y.-C. Chen, J.-H. Li, C.-W. Kung, Toward Metal–Organic-Framework-based supercapacitors: Room-temperature synthesis of electrically conducting MOF-based nanocomposites decorated with redox-active manganese. Eur. J. Inorg. Chem., 2019, 3036-3044, 2019.
[107] Y.-S. Wang, J.-L. Liao, Y.-S. Li, Y.-C. Chen, J.-H. Li, W.H. Ho, W.-H. Chiang, C.-W. Kung, Zirconium-based Metal–Organic Framework nanocomposites containing dimensionally distinct nanocarbons for pseudocapacitors. ACS Appl. Nano Mater., 3, 1448-1456, 2020.
[108] Y.-D. Song, W.H. Ho, Y.-C. Chen, J.-H. Li, Y.-S. Wang, Y.-J. Gu, C.-H. Chuang, C.-W. Kung, Selective formation of polyaniline confined in the nanopores of a Metal–Organic Framework for supercapacitors. Chem. Eur. J., 27, 3560-3567, 2021.
[109] Z. Wang, H. Zhou, C. Meng, W. Xiong, Y. Cai, P. Hu, H. Pang, A. Yuan, Enhancing ion transport: Function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries. ACS Appl. Energy Mater., 3, 4265-4274, 2020.
[110] R.G. Linford, S. Hackwood, Physical techniques for the study of solid electrolytes. Chem. Rev., 81, 327-364, 1981.
[111] P. Colomban, A. Novak, Proton transfer and superionic conductivity in solids and gels. J. Mol. Struct., 177, 277-308, 1988.
[112] C.-W. Hu, T. Kawamoto, H. Tanaka, A. Takahashi, K.-M. Lee, S.-Y. Kao, Y.-C. Liao, K.-C. Ho, Water processable Prussian blue–polyaniline:polystyrene sulfonate nanocomposite (PB–PANI:PSS) for multi-color electrochromic applications. J. Mater. Chem. C, 4, 10293-10300, 2016.
[113] C.-W. Hu, Y. Yamada, K. Yoshimura, A. Takahashi, H. Watanabe, K. Tajima, T. Kawamoto, High contrast gasochromism of wet processable thin film with chromic and catalytic nanoparticles. J. Mater. Chem. C, 6, 4760-4764, 2018.
[114] C. Vaalma, G.A. Giffin, D. Buchholz, S. Passerini, Non-aqueous K-ion battery based on layered K0.3MnO2and hard carbon/carbon black. J. Electrochem. Soc., 163, A1295-A1299, 2016.
[115] J. Huang, X. Lin, H. Tan, B. Zhang, Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater., 8, 1703496, 2018.
[116] K.V. Kravchyk, P. Bhauriyal, L. Piveteau, C.P. Guntlin, B. Pathak, M.V. Kovalenko, High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun., 9, 4469, 2018.
[117] Y. Li, K. Xiao, C. Huang, J. Wang, M. Gao, A. Hu, Q. Tang, B. Fan, Y. Xu, X. Chen, Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology. Nanomicro Lett, 13, 1, 2020.
[118] S. Luo, T. Wang, H. Lu, X. Xu, G. Xue, N. Xu, Y. Wang, D. Zhou, Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance. New J. Chem., 44, 11678-11683, 2020.
[119] Y. Xu, J. Ruan, Y. Pang, H. Sun, C. Liang, H. Li, J. Yang, S. Zheng, Homologous strategy to construct high-pPerformance coupling electrodes for advanced potassium-ion hybrid capacitors. Nanomicro Lett, 13, 14, 2020.
[120] H. Gao, K. Yin, Z. Guo, Y. Zhang, W. Ma, W. Yang, K. Sun, Z. Peng, Z. Zhang, Dealloying-constructed hierarchical nanoporous bismuth-antimony anode for potassium ion batteries. Fundamental Research, 2021.
[121] D. Su, J. Dai, M. Yang, J. Wen, J. Yang, W. Liu, H. Hu, L. Liu, Y. Feng, Red phosphorus embedded in TiO2/C nanofibers to enhance the potassium-ion storage performance. Nanoscale, 13, 6635-6643, 2021.
[122] L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G. Shen, X. Wang, J.I. Zink, Q. Xiao, M. Cai, G. Wang, Y. Lu, B. Dunn, Creating lithium-ion electrolytes with biomimetic ionic channels in Metal–Organic Frameworks. Adv. Mater., 30, 1707476, 2018.
[123] P. Kesharwani, D.K. Sahu, M. Sahu, T.b. Sahu, R.C. Agrawal, Study of ion transport and materials properties of K+-ion conducting solid polymer electrolyte (SPE): [(1-x) PEO: xCH3COOK]. Ionics, 23, 2823-2827, 2017.
[124] Y. Pavani, M. Ravi, S. Bhavani, R.S. Karthikeya, V.V.R.N. Rao, Physical investigations on pure and KBr doped poly(vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. J. Mater. Sci. Mater. Electron., 29, 5518-5524, 2018.
[125] H. Yuan, H. Li, T. Zhang, G. Li, T. He, F. Du, S. Feng, A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries. J. Mater. Chem. A, 6, 8413-8418, 2018.
[126] H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng, Y. Tian, L. Ci, B. Xi, S. Xiong, J. Feng, Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. J. Power Sources, 399, 294-298, 2018.
[127] H. Fei, Y. Liu, Y. An, X. Xu, J. Zhang, B. Xi, S. Xiong, J. Feng, Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode. J. Power Sources, 433, 226697, 2019.
[128] M. Zhang, A.M. Zhang, Y. Chen, J. Xie, Z.-F. Xin, Y.-J. Chen, Y.-H. Kan, S.-L. Li, Y.-Q. Lan, Q. Zhang, Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Storage Mater., 29, 172-181, 2020.
[129] P. Kesharwani, D.K. Sahu, Y.K. Mahipal, R.C. Agrawal, Conductivity enhancement in K+-ion conducting dry Solid Polymer Electrolyte (SPE): [PEO: KNO3]: A consequence of KI dispersal and nano-ionic effect. Mater. Chem. Phys., 193, 524-531, 2017.
[130] H. Gao, L. Xue, S. Xin, J.B. Goodenough, A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. Int. Ed., 57, 5449-5453, 2018.
[131] A. Haffner, A.-K. Hatz, O.E.O. Zeman, C. Hoch, B.V. Lotsch, D. Johrendt, Polymorphism and fast potassium-ion conduction in the T5 supertetrahedral phosphidosilicate KSi2P3. Angew. Chem. Int. Ed., 60, 13641-13646, 2021.