| 研究生: |
洪惠琪 Hung, Hui-Chi |
|---|---|
| 論文名稱: |
恐懼記憶維持與遺忘過程中探討杏仁核區sonic hedgehog活化與神經新生關聯性 Involvement of sonic hedgehog activation and neurogenesis in the amygdala in fear memory formation and extinction |
| 指導教授: |
簡伯武
Gean, Po-Wu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 神經新生 、杏仁核 、Sonic hedgehog 、恐懼記憶 、遺忘 |
| 外文關鍵詞: | Neurogenesis, Amygdala, Sonic hedgehog, Fear conditioning, Extinction |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經新生遍及整個生命過程,目前認為大腦中仍然持續有神經新生的位置,主要在海馬迴與腦室下區。研究首先探討神經新生是否會發生在杏仁核,並且探究其與恐懼記憶維持與遺忘過程之相關性。為了測量新生神經細胞,進行恐懼記憶訓練(聲音與電刺激配對)前兩小時,小鼠皮下施予5-bromo-2'-deoxyuridine (BrdU),隨後審視其神經新生情形。恐懼記憶訓練組,新生前驅神經細胞與新生神經細胞數目顯著變多,結果顯示聲音與電刺激配對訓練誘發神經新生。為了更加瞭解新生神經細胞與記憶之間的相關性,小鼠投予抗細胞有絲分裂期藥物,例如甲基氧化偶氮甲醇醋酸鹽。甲基氧化偶氮甲醇醋酸鹽降低神經新生與破壞恐懼記憶維持。同樣地,顱內杏仁核區給予阿糖胞苷干擾DNA合成,也可以降低恐懼行為反應。經歷恐懼記憶訓練後,Sonic hedgehog (Shh),接收器patched1 (Ptc1) 和轉錄因子Gli1蛋白質個別表現自第一天漸增,第七天回復正常值。免疫螢光染色方式更加確認,增加Sonic hedgehog表達細胞數量,來自恐懼記憶學習。逆轉錄病毒載入小髮夾RNA,靜默當細胞處於有絲分裂時期Sonic hedgehog基因,顯示新生神經細胞數目與恐懼行為降低。上述結果得知,恐懼記憶性學習誘發杏仁核區Sonic hedgehog訊息活化,促使神經新生與恐懼記憶維持。研究接著探究杏仁核區神經新生與恐懼記憶遺忘相關性。小鼠經歷十五次聲音與電刺激配對,二十四小時後,小鼠又經歷每天共十五次單獨聲音出現試驗,一共七天的恐懼記憶遺忘訓練。遺忘訓練前兩小時,小鼠皮下施予BrdU,隨後審視神經新生情形。結果顯示,神經新生數目增加在經歷恐懼遺忘訓練組,相對於沒有經歷遺忘組與正常組別。個別投予抗細胞有絲分裂期或干擾DNA合成藥物後,能降低神經新生和阻礙遺忘訓練過程。逆轉錄病毒載入小髮夾RNA,靜默當細胞處於有絲分裂時期Sonic hedgehog基因,顯示降低新生細胞數目與阻礙遺忘訓練過程。相反地,逆轉錄病毒載入Sonic hedgehog cDNA,過度表達當細胞處於有絲分裂時期Sonic hedgehog基因,顯示增加新生神經細胞數目與加速遺忘訓練。上述結果得知,杏仁核區Sonic hedgehog訊息活化與神經新生,參與恐懼記憶遺忘過程。故, Sonic hedgehog訊息活化能促進杏仁核神經新生,並參與恐懼記憶形成與遺忘。
It is known that neurogenesis occurs throughout the life mostly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. We investigated whether neurogenesis occurred in the amygdala and its function in fear memory formation. Mice were injected intraperitoneally with 5-bromo-2'-deoxyuridine (BrdU) 2 h before receiving 15 tone–footshock pairings. The number of BrdU+/DCX+ and BrdU+/NeuN+ cells was significantly higher in the conditioned mice suggesting that association of tone with footshock induced neurogenesis. To determine the relationship between neurogenesis and memory formation, mice were given cell proliferation inhibitor methylazoxymethanol acetate (MAM). MAM markedly reduced neurogenesis and impaired fear memory formation. Similarly, intra-amygdala infusion of cytosine arabinoside (Ara-C) which interferes with DNA synthesis decreased freezing responses. Sonic hedgehog (Shh), its receptor patched1 (Ptc1) and transcription factor Gli1 protein levels increased at 1 day and returned to baseline at 7 days after fear conditioning. Immunohistochemistry confirmed that Shh+ cells increased after conditioning. Silencing Shh gene expression with small hairpin interfering RNA (shRNA) by means of a retrovirus vector encoding Shh shRNA (Retro-Shh-shRNA) which allowed us to knockdown Shh specifically in the mitotic neurons reduced the number of BrdU+/NeuN+ cells and decreased freezing responses. These results suggest that fear learning induces Shh signaling activation in the amygdala which promotes neurogenesis and long-term memory formation. We next investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with BrdU. BrdU+/NeuN+ cells were analyzed 52 days after training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU+/NeuN+ cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. MAM or Ara-C reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with shRNA by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. We conclude that activation of Shh signaling plays a critical role in promoting amygdalar neurogenesis, support of LTM formation and facilitating of extinction.
References
Abraham WC, Williams JM. LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem 89:260-268 (2008).
Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894-897 (2005).
Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K, Richards BA, Miyakawa T, Josselyn SA, Frankland PW. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598-602 (2014).
Alberini CM. The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol Learn Mem 89:234-246 (2008).
Amano T, Unal CT, Pare D. Synaptic correlates of fear extinction in the amygdala. Nat neurosci 13:489-494 (2010).
Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232-252 (2009).
Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53:261-277 (2007).
Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105:2711-2716 (2008).
Bischofberger J. Young and excitable: new neurons in memory networks. Nat Neurosci 10:273-275 (2007).
Britto J, Tannahill D, Keynes R. A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat Neurosci 5:103-110 (2002).
Burghardt NS, Park EH, Hen R, Fenton AA. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22:1795-1808 (2012).
Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406-417 (2001).
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407-413 (1996).
Cleva RM, Wischerath KC, Olive MF. Extinction learning and adult neurogenesis. Neuropsychopharmacology 36:360-361 (2011).
Colon-Cesario M, Wang J, Ramos X, Garcia HG, Davila JJ, Laguna J, Rosado C, Pena de Ortiz S. An inhibitor of DNA recombination blocks memory consolidation, but not reconsolidation, in context fear conditioning. J Neurosci 26:5524-5533 (2006).
Deng W, Saxe MD, Gallina IS, Gage FH. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532-13542 (2009).
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116-1127 (2006).
Dupret D, Montaron MF, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Methylazoxymethanol acetate does not fully block cell genesis in the young and aged dentate gyrus. Eur J Neurosci 22:778-783 (2005).
Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757-771 (2009).
Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747-756 (1995).
Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12:854-863 (1992).
Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis SK. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat neurosci 12:1248-1256 (2009).
Gold PE. Protein synthesis inhibition and memory: formation vs amnesia. Neurobiol Learn Mem 89:201-211 (2008).
Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95:3168-3171 (1998).
Handrigan GR, Richman JM. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata). Devel Biol 337:171-186 (2010).
Herry C, Garcia R. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci 22:577-583 (2002).
Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A. Switching on and off fear by distinct neuronal circuits. Nature 454:600-606 (2008).
Hsiao YH, Chen PS, Chen SH, Gean PW. The involvement of Cdk5 activator p35 in social isolation-triggered onset of early Alzheimer's disease-related cognitive deficit in the transgenic mice. Neuropsychopharmacology 36:1848-1858 (2011).
Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA, Rosenthal A. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15:35-44 (1995).
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153-1161 (2008).
Jasnow AM, Ehrlich DE, Choi DC, Dabrowska J, Bowers ME, McCullough KM, Rainnie DG, Ressler KJ. Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J Neurosci 33:10396-10404 (2013).
Keilhoff G, Becker A, Grecksch G, Bernstein HG, Wolf G. Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology 31:1165-1176 (2006).
Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553-566 (2012).
Ko HG, Jang DJ, Son J, Kwak C, Choi JH, Ji YH, Lee YS, Son H, Kaang BK. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory. Mol Brain 2:1 (2009).
Kullmann DM, Moreau AW, Bakiri Y, Nicholson E. Plasticity of inhibition. Neuron 75:951-962 (2012).
Lai CS, Franke TF, Gan WB. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483:87-91 (2012).
Lakshminarasimhan H, Chattarji S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS one 7:e30481 (2012).
Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 5:45-54 (2004).
Lauth M, Bergstrom A, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgard R. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 17:718-725 (2010).
Lee SH, Choi JH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Lee SH, Kim H, Kaang BK. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:1253-1256 (2008).
Li CI, Maglinao TL, Takahashi LK. Medial amygdala modulation of predator odor-induced unconditioned fear in the rat. Behav Neurosci 118:324-332 (2004).
Livneh U, Paz R. Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories. Neuron 75:133-142 (2012).
Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179-193 (2006).
Magavi SS, Macklis JD. Identification of newborn cells by BrdU labeling and immunocytochemistry in vivo. Methods Mol Biol 438:335-343 (2008).
Makkar SR, Zhang SQ, Cranney J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 35:1625-1652 (2010).
Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562-1571 (2003).
Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci 5:844-852 (2004).
McGaugh JL. Memory--a century of consolidation. Science 287:248-251 (2000).
Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223-250 (2005).
Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry 12:120-150 (2007).
Niv F, Keiner S, Krishna, Witte OW, Lie DC, Redecker C. Aberrant neurogenesis after stroke: a retroviral cell labeling study. Stroke. 43:2468-2475 (2012).
Noonan MA, Bulin SE, Fuller DC, Eisch AJ. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci 30:304-315 (2010).
Okuda H, Tatsumi K, Makinodan M, Yamauchi T, Kishimoto T, Wanaka A. Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res 87:3546-3553 (2009).
Ou LC, Yeh SH, Gean PW. Late expression of brain-derived neurotrophic factor in the amygdala is required for persistence of fear memory. Neurobiol Learn Mem 93:372-382 (2010).
Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335-344 (2005).
Park JH, Cho H, Kim H, Kim K. Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience 140:673-684 (2006).
Poulos AM, Li V, Sterlace SS, Tokushige F, Ponnusamy R, Fanselow MS. Persistence of fear memory across time requires the basolateral amygdala complex. Proc Natl Acad Sci U S A. 106:11737-11741 (2009).
Roozendaal B, McReynolds JR, McGaugh JL. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J Neurosci 24:1385-1392 (2004).
Rudy JW. Is there a baby in the bathwater? Maybe: some methodological issues for the de novo protein synthesis hypothesis. Neurobiol Learn Mem 89:219-224 (2008).
Ruiz i Altaba A, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3:24-33 (2002).
Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103:17501-17506 (2006).
Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578-584 (2002).
Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372-376 (2001).
Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130:843-852 (2005).
Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458-461 (2011).
Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198-214 (2007).
Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM. BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114:795-805 (2002).
Traiffort E, Angot E, Ruat M. Sonic Hedgehog signaling in the mammalian brain. J Neurochem 113:576-590 (2010).
Traiffort E, Charytoniuk DA, Faure H, Ruat M. Regional distribution of Sonic Hedgehog, patched, and smoothened mRNA in the adult rat brain. J Neurochem 70:1327-1330 (1998).
Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M. Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11:3199-3214 (1999).
Tronson NC, Schrick C, Guzman YF, Huh KH, Srivastava DP, Penzes P, Guedea AL, Gao C, Radulovic J. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear. J Neurosci 29:3387-3394 (2009).
Trouche S, Sasaki JM, Tu T, Reijmers LG. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 80:1054-1065 (2013).
Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810-6818 (2002).
Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103-114 (1999).
Wittenberg GM, Sullivan MR, Tsien JZ. Synaptic reentry reinforcement based network model for long-term memory consolidation. Hippocampus 12:637-647 (2002).
Zhang CL, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451:1004-1007 (2008).
Zimmerman JM, Rabinak CA, McLachlan IG, Maren S. The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learn Mem 14:634-644 (2007).