| 研究生: |
李昀叡 Lee, Yun-Ruei |
|---|---|
| 論文名稱: |
TerraSAR-X雷達衛星正射處理與淹水判釋產品之精度評估 Generation and Accuracy Assessment of TerraSAR-X products:Orthoimage and Inundated Area |
| 指導教授: |
劉正千
Liu, Cheng-Chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 合成孔徑雷達 、閥值法 、TerraSAR-X 、COSMO-SkyMed 、福衛二號 、增強型李氏濾波器 |
| 外文關鍵詞: | Synthetic Aperture Radar, threshold, Formosat-2, TerraSAR-X, COSMO-SkyMed, Enhanced Lee Filter |
| 相關次數: | 點閱:121 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來因全球暖化加劇,於世界各地所造成的各種環境災害愈趨頻繁,其中洪澇災害不僅造成經濟上巨大的損失,更嚴重威脅人類的生命安全。因此,如何快速準確地提供近即時淹水資訊給救難組織實施救援工作,或給予政府機關評估災害影響範圍,是當今世界各國都在努力的課題。合成孔徑雷達(SAR)具有可以穿透雲霧與塵埃、24小時全天候運作之特性,雷達波對靜止水體又會強烈反射,提供淹水範圍清楚的訊號。因此,在洪澇災害緊急應變實務工作上,需要發展能夠快速處理於洪澇災害發生時所獲取之合成孔徑雷達衛星影像,並從中準確地判釋出淹水範圍的技術。
本研究提出以區域閥值半自動選定技術來處理偏極化合成孔徑雷達影像,以達成快速而準確地判定淹水範圍的目標。先使用SARscape分別處裡2012年蘇拉颱風TerraSAR-X雷達影像與2013年蘇力颱風COSMO-SkyMed雷達影像,套用增強型李氏濾波器(Enhanced Lee Filter)以去除斑點雜訊,經過輻射校正與幾何校正的雷達影像產品,再將濾波後的影像求取雷達影像的直方圖,以圈繪出疑似水體範圍。再與近期福衛二號高空間分辨率光學影像交互比對,並套疊於數值高程模型上做立體檢視,便可以快速結合判釋人員之專家經驗,準確地率定出水體範圍。最後正射產品做精度評估,其RMS Error 值為1.298127。台灣颱風洪水研究中心提供現地資料與率定的水體範圍作套疊來討論其精度,蘇力颱風初步判釋準確率約為59%;若排除圈繪邊緣誤差,系統判釋準確率達70%,蘇力颱風初步判釋準確率約為71%;若排除圈繪邊緣誤差,系統判釋準確率達100%。
It has been witnessed that Global warming effects are causing various environmental disasters all over the world much more frequently within this decade. Among these disasters, floods not only lead to great loss of economy, but also pose threat to safety of human life. Therefore, how to rapidly provide accurate real time flooding information as the government’s reference of rescue missions or as the assessment of computing inundated areas remain a critical issue of every country. Synthetic Aperture Radar can be operated 24 hours and avoid influences of cloud and dust. As the surface of still water reflects radar wave, Synthetic Aperture Radar is able to provide clear signal of flooding range. Thus, it is necessary to develop technique of promptly processing Synthetic Aperture Radar images acquired during the occurrence of flood and precisely delineating inundated areas for the usage of flood emergency response.
This thesis attempts to apply the technique of automatic determination of regional thresholds in processing polarized synthetic aperture radar image and to achieve the goal of rapidly and accurately delineating inundated areas. The raw data of radar image will be orthorectified first. After radiometric correction and geometric calibration, noise of radar image will be filtered by employing Enhanced Lee Filter. Then, the system starts to divide radar images for generating its histogram, choose the best regional threshold that can distinguish still water surface and delineate quasi-inundated areas based on the threshold. The result will be compared with Formosat-2 imagery and overlaid on digital elevation model for further 3D examination. Together with researchers’ experiences, inundated areas that have been delineated by the system will be inspected again.
Bates, P. D. (2004), Remote sensing and flood inundation modelling, Hydrological Processes, 18(13), 2593.
Bazi, Y., L. Bruzzone, and F. Melgani (2005), An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, Ieee Transactions on Geoscience and Remote Sensing, 43(4), 874-887.
Breit, H. (2010), TerraSAR-X SAR processing and products, Geoscience and Remote Sensing, IEEE Transactions on, 48(2), 727.
Brivio, P. A., R. Colombo, M. Maggi, and R. Tomasoni (2002), Integration of remote sensing data and GIS for accurate mapping of flooded areas, International Journal of Remote Sensing, 23(3), 429-441.
Chaouch, N., M. Temimi, S. Hagen, J. Weishampel, S. Medeiros, and R. Khanbilvardi (2012), A synergetic use of satellite imagery from SAR and optical sensors to improve coastal flood mapping in the Gulf of Mexico, Hydrological Processes, 26(11), 1617-1628.
Danklmayer, A. (2009), Assessment of atmospheric propagation effects in SAR images, Geoscience and Remote Sensing, IEEE Transactions on, 47(10), 3507.
Danklmayer, A., B. J. Doering, M. Schwerdt, and M. Chandra (2009), Assessment of Atmospheric Propagation Effects in SAR Images, Ieee Transactions on Geoscience and Remote Sensing, 47(10), 3507-3518.
Henry, J. B., P. Chastanet, K. Fellah, and Y. L. Desnos (2006), Envisat multi-polarized ASAR data for flood mapping, International Journal of Remote Sensing, 27(9-10), 1921-1929.
Hong, S. H. (2010), Evaluation of TerraSAR-X observations for wetland InSAR application, Geoscience and Remote Sensing, IEEE Transactions on, 48(2), 864.
Horritt, M. S., D. C. Mason, and A. J. Luckman (2001), Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model, International Journal of Remote Sensing, 22(13), 2489-2507.
Joyce, K. E., S. E. Belliss, S. V. Samsonov, S. J. McNeill, and P. J. Glassey (2009), A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters, Progress in Physical Geography, 33(2), 183-207.
Kumar, K. V., T. R. Martha, and P. S. Roy (2006), Mapping damage in the Jammu and Kashmir caused by 8 October 2005 M-w 7.3 earthquake from the Cartosat-1 and Resourcesat-1 imagery, International Journal of Remote Sensing, 27(20), 4449-4459.
Leberl, F. (1990), Radargrammetric image processing., Artech House, , Boston, USA.
Lee, J. S. (1981), Refined filtering of image noise using local statistics, Computer Graphics and Image Processing, 15(4), 380.
Lillesand, T., R. Kiefer, and J. Chipman (2004), Remote Sensing and Image Interpretation.
Martinis, S., A. Twele, and S. Voigt (2009), Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data, Nat. Hazards Earth Syst. Sci., 9(2), 303-314.
Martinis, S., A. Twele, and S. Voigt (2011), Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov Image Modeling on Irregular Graphs, Ieee Transactions on Geoscience and Remote Sensing, 49(1), 251-263.
Mason (2007), Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry, Geoscience and Remote Sensing, IEEE Transactions on, 45(12), 3932.
Mason, D. C., G. J. P. Schumann, J. C. Neal, J. Garcia-Pintado, and P. D. Bates (2012), Automatic near real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: A case study, Remote Sens. Environ., 124, 705-716.
Mason, D. C., R. Speck, B. Devereux, G. J. P. Schumann, J. C. Neal, and P. D. Bates (2010), Flood Detection in Urban Areas Using TerraSAR-X, IEEE Transactions on Geoscience and Remote Sensing, 48(2), 882-894.
Mather, P. M. (1988), Introduction tp the physics and techniques of remote-sensing - Elachi,C, Nature, 332(6160), 188-188.
Nico, G., M. Pappalepore, G. Pasquariello, A. Refice, and S. Samarelli (2000), Comparison of SAR amplitude vs. coherence flood detection methods - a GIS application, International Journal of Remote Sensing, 21(8), 1619-1631.
Pal, N. R. a. P., S. K. (1993), A review on image segmentation techniques, Pattern Recogn, 26, 1277–1294.
Pulvirenti, L., N. Pierdicca, M. Chini, and L. Guerriero (2011), An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic, Nat. Hazards Earth Syst. Sci., 11(2), 529-540.
Rango, A., and Salomons (1974), Regional flood mapping from space, Water Resources Research, 10(3), 473-484.
Rocchini, D., and A. Di Rita (2005), Relief effects on aerial photos geometric correction, Applied Geography, 25(2), 159-168.
Sahoo, S. P. K., W. S., A. K. C., and Y. C. Chen (1988), A survey of thresholding techniques, Vision Graph, 41, 233-260.
Schumann, G., P. D. Bates, M. S. Horritt, P. Matgen, and F. Pappenberger (2009), Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models, Reviews of Geophysics, 47.
Schumann, G., R. Hostache, C. Puech, L. Hoffmann, P. Matgen, F. Pappenberger, and L. Pfister (2007), High-resolution 3-D flood information from radar imagery for flood hazard management, Ieee Transactions on Geoscience and Remote Sensing, 45(6), 1715-1725.
Singhroy, V. (1995), SAR integrated techniques for geohazard assessment, Advances in Space Research, 15(11), 67.
Singhroy, V. (1998), Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images, Advances in Space Research, 21(3), 465.
Townsend, P. A. (2002), Estimating forest structure in wetlands using multitemporal SAR, Remote Sens. Environ., 79(2-3), 288-304.
Voigt, S., T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl (2007), Satellite image analysis for disaster and crisis-management support, Ieee Transactions on Geoscience and Remote Sensing, 45(6), 1520-1528.
Wang, Q., M. Watanabe, S. Hayashi, and S. Murakami (2003), Using NOAA AVHRR data to assess flood damage in China, Environmental Monitoring and Assessment, 82(2), 119-148.
林家慶 (2007), 應用福衛二號時間序列影像監測曾文水庫集水區崩塌地之時空變化, 成功大學, 台南.
陳柏澧 (2009), 福爾摩沙二號衛星數值高程模型與幀攝影像產品之產製與精度評估, 成功大學, 台南.