簡易檢索 / 詳目顯示

研究生: 李昀叡
Lee, Yun-Ruei
論文名稱: TerraSAR-X雷達衛星正射處理與淹水判釋產品之精度評估
Generation and Accuracy Assessment of TerraSAR-X products:Orthoimage and Inundated Area
指導教授: 劉正千
Liu, Cheng-Chien
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 合成孔徑雷達閥值法TerraSAR-XCOSMO-SkyMed福衛二號增強型李氏濾波器
外文關鍵詞: Synthetic Aperture Radar, threshold, Formosat-2, TerraSAR-X, COSMO-SkyMed, Enhanced Lee Filter
相關次數: 點閱:121下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因全球暖化加劇,於世界各地所造成的各種環境災害愈趨頻繁,其中洪澇災害不僅造成經濟上巨大的損失,更嚴重威脅人類的生命安全。因此,如何快速準確地提供近即時淹水資訊給救難組織實施救援工作,或給予政府機關評估災害影響範圍,是當今世界各國都在努力的課題。合成孔徑雷達(SAR)具有可以穿透雲霧與塵埃、24小時全天候運作之特性,雷達波對靜止水體又會強烈反射,提供淹水範圍清楚的訊號。因此,在洪澇災害緊急應變實務工作上,需要發展能夠快速處理於洪澇災害發生時所獲取之合成孔徑雷達衛星影像,並從中準確地判釋出淹水範圍的技術。
    本研究提出以區域閥值半自動選定技術來處理偏極化合成孔徑雷達影像,以達成快速而準確地判定淹水範圍的目標。先使用SARscape分別處裡2012年蘇拉颱風TerraSAR-X雷達影像與2013年蘇力颱風COSMO-SkyMed雷達影像,套用增強型李氏濾波器(Enhanced Lee Filter)以去除斑點雜訊,經過輻射校正與幾何校正的雷達影像產品,再將濾波後的影像求取雷達影像的直方圖,以圈繪出疑似水體範圍。再與近期福衛二號高空間分辨率光學影像交互比對,並套疊於數值高程模型上做立體檢視,便可以快速結合判釋人員之專家經驗,準確地率定出水體範圍。最後正射產品做精度評估,其RMS Error 值為1.298127。台灣颱風洪水研究中心提供現地資料與率定的水體範圍作套疊來討論其精度,蘇力颱風初步判釋準確率約為59%;若排除圈繪邊緣誤差,系統判釋準確率達70%,蘇力颱風初步判釋準確率約為71%;若排除圈繪邊緣誤差,系統判釋準確率達100%。

    It has been witnessed that Global warming effects are causing various environmental disasters all over the world much more frequently within this decade. Among these disasters, floods not only lead to great loss of economy, but also pose threat to safety of human life. Therefore, how to rapidly provide accurate real time flooding information as the government’s reference of rescue missions or as the assessment of computing inundated areas remain a critical issue of every country. Synthetic Aperture Radar can be operated 24 hours and avoid influences of cloud and dust. As the surface of still water reflects radar wave, Synthetic Aperture Radar is able to provide clear signal of flooding range. Thus, it is necessary to develop technique of promptly processing Synthetic Aperture Radar images acquired during the occurrence of flood and precisely delineating inundated areas for the usage of flood emergency response.
    This thesis attempts to apply the technique of automatic determination of regional thresholds in processing polarized synthetic aperture radar image and to achieve the goal of rapidly and accurately delineating inundated areas. The raw data of radar image will be orthorectified first. After radiometric correction and geometric calibration, noise of radar image will be filtered by employing Enhanced Lee Filter. Then, the system starts to divide radar images for generating its histogram, choose the best regional threshold that can distinguish still water surface and delineate quasi-inundated areas based on the threshold. The result will be compared with Formosat-2 imagery and overlaid on digital elevation model for further 3D examination. Together with researchers’ experiences, inundated areas that have been delineated by the system will be inspected again.

    目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第 1 章 研究緣起與目的 1 1.1 研究背景 1 1.1.1 台灣地區洪澇災害頻傳 1 1.1.2 發展趨勢 2 1.1.3 瓶頸 4 1.1.4 本研究的必要性 4 1.2 研究目的 5 1.3 論文架構 5 第 2 章 文獻回顧 6 2.1 雷達系統 6 2.1.1 雷達概述 6 2.1.2 頻率 6 2.1.3 解析度 7 2.1.4 雷達方程式 10 2.2 系統參數 10 2.2.1 偏極化 10 2.2.2 入射角 11 2.2.3 觀測幾何 12 2.3 地形參數 13 2.3.1 地表粗糙度 13 2.3.2 介電質效應 14 2.4 判釋水體 16 第 3 章 研究方法 18 3.1 研究區域 20 3.2 研究資料 23 3.3 影像處理 27 3.3.1 格式標準化 30 3.3.2 影像濾波 32 3.3.3 輻射校正 34 3.3.4 幾何校正 35 3.3.5 水體範圍判釋 39 第 4 章 結果與討論 52 4.1 正射糾正影像精度評估 52 4.2 圈繪水體精度評估 57 4.2.1 蘇拉颱風事件 57 4.2.2 蘇力颱風事件 62 第 5 章 結論與建議 67 5.1 結論 67 5.2 建議 68 參考文獻 68 附錄一:蘇拉颱風事件淹水測站資料 71 附錄二:蘇力颱風事件淹水測站資料 88 圖目錄 圖 1 1 雷達衛星發展表,改編自[Lillesand et al., 2004] 3 圖 2 1 星載SAR影像的幾何意義,改編自[D. C. Mason et al., 2012] 7 圖 2 2 合成孔徑雷達的原理 10 圖 2 3 合成孔徑雷達受地形影響的效應,改編自[D. C. Mason et al., 2012] 12 圖 2 4 雷達反射在(a)光滑表面(b)適當粗糙表面(c)極度粗糙表面,改編自[Lillesand et al., 2004] 13 圖 2 5 水體在各位置的背向散射強度,改編自[Lillesand et al., 2004] 15 圖 2 6 都會區域的各種雷達波反射關係,改編自[Lillesand et al., 2004] 16 圖 3 1 研究架構流程圖 19 圖 3 2 中央氣象局蘇拉颱風路徑預測圖 20 圖 3 3 蘇拉颱風影響台灣時間之日累積雨量圖 21 圖 3 4 中央氣象局蘇力颱風路徑預測圖 22 圖 3 5 蘇力颱風影響台灣時間之日累積雨量圖 22 圖 3 6 TerraSAR-X影像訂單,紅色為欲拍攝目標區域,藍色為實際拍攝區域 23 圖 3 7 德國TerraSAR-X衛星 24 圖 3 8 TerraSAR-X衛星架構圖(資料來源:DLR) 25 圖 3 9 TerraSAR-X拍攝組態示意圖(資料來源:ASTRIUM) 26 圖 3 10 宜蘭地區雷達影像產品內容 27 圖 3 11 宜蘭地區雷達影像的基本資料 28 圖 3 12 宜蘭地區雷達影像 31 圖 3 13 使用增強李式濾波器的雷達影像 33 圖 3 14 宜蘭地區5mDEM影像 36 圖 3 15 宜蘭地區正射影像 38 圖 3 16 物件分離與單元化示意圖。其中綠線為「水體潛勢區」,紅線為選取待判定之「水體潛勢區」,黃線為經比對之「水體判定區」 40 圖 3 17 偵測水體範圍之實例(a)福衛二號光學影像(b)局部影像之雷達回波強度直方圖,自動選定之局部最佳低閥值以紅線標示(c) 雷達回波強度影像套疊判釋的水體區域(d) 雷達回波強度影像套疊於數值高程模型上做立體檢視的結果 41 圖 3 18 局部圈繪水體範圍 42 圖 3 19 一般水體範圍判釋時會遇到的雷達回波強度波形:(a)單峰,(b)雙峰 43 圖 3 20 門檻值決策示意圖 43 圖 3 21 (a)全台灣海岸線遮罩圖(b)全台灣山區遮罩圖 44 圖 3 22 宜蘭地區海洋遮罩圖 45 圖 3 23 宜蘭地區非山區遮罩圖 46 圖 3 24 宜蘭地區無DN值區域遮罩圖 47 圖 3 25 去除山區與海洋範圍之宜蘭地區正射影像 48 圖 3 26 ESARIWDS判釋河流區域 49 圖 3 27 ESARIWDS判釋都會區域 49 圖 3 28 宜蘭地區初步判釋後的遮罩圖 50 圖 3 29 宜蘭地區判釋水體的範圍 51 圖 4 1 宜蘭地區正射影像 53 圖 4 2 (a)為福衛二號影像,(b)為雷達影像 54 圖 4 3 匹配內容及RMS Error 54 圖 4 4 宜蘭地區誤差向量圖 56 圖 4 5 淹水監測站的位置分布 57 圖 4 6 ISR5測站判釋結果與現地照片 59 圖 4 7 IRT1測站判釋結果與現地照片 59 圖 4 8 ISR2測站判釋結果與現地照片 63 圖 4 9 ISR5測站判釋結果與現地照片 63 圖 4 10 IRT1測站判釋結果與現地照片 64 圖 4 11 IRT4測站判釋結果與現地照片 64 圖 4 12 IRT7測站判釋結果與現地照片 64 表目錄 表 1 1 現役雷達衛星比較表 3 表 3 1 TerraSAR-X影像產品規格 23 表 3 2 德國TerraSAR-X衛星資料表 25 表 3 3 TerraSAR-X衛星命名方式 29 表 4 1 選定點位的詳細資料 55 表 4 2 蘇拉颱風淹水監測站座水位高程、路面高程及最低水位資訊 60 表 4 3 蘇拉颱風實際測站雷達影像水體範圍判釋結果比對 61 表 4 4 蘇力颱風淹水監測站座水位高程、路面高程及最低水位資訊 65 表 4 5 蘇拉颱風實際測站雷達影像水體範圍判釋結果比對 66

    Bates, P. D. (2004), Remote sensing and flood inundation modelling, Hydrological Processes, 18(13), 2593.
    Bazi, Y., L. Bruzzone, and F. Melgani (2005), An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, Ieee Transactions on Geoscience and Remote Sensing, 43(4), 874-887.
    Breit, H. (2010), TerraSAR-X SAR processing and products, Geoscience and Remote Sensing, IEEE Transactions on, 48(2), 727.
    Brivio, P. A., R. Colombo, M. Maggi, and R. Tomasoni (2002), Integration of remote sensing data and GIS for accurate mapping of flooded areas, International Journal of Remote Sensing, 23(3), 429-441.
    Chaouch, N., M. Temimi, S. Hagen, J. Weishampel, S. Medeiros, and R. Khanbilvardi (2012), A synergetic use of satellite imagery from SAR and optical sensors to improve coastal flood mapping in the Gulf of Mexico, Hydrological Processes, 26(11), 1617-1628.
    Danklmayer, A. (2009), Assessment of atmospheric propagation effects in SAR images, Geoscience and Remote Sensing, IEEE Transactions on, 47(10), 3507.
    Danklmayer, A., B. J. Doering, M. Schwerdt, and M. Chandra (2009), Assessment of Atmospheric Propagation Effects in SAR Images, Ieee Transactions on Geoscience and Remote Sensing, 47(10), 3507-3518.
    Henry, J. B., P. Chastanet, K. Fellah, and Y. L. Desnos (2006), Envisat multi-polarized ASAR data for flood mapping, International Journal of Remote Sensing, 27(9-10), 1921-1929.
    Hong, S. H. (2010), Evaluation of TerraSAR-X observations for wetland InSAR application, Geoscience and Remote Sensing, IEEE Transactions on, 48(2), 864.
    Horritt, M. S., D. C. Mason, and A. J. Luckman (2001), Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model, International Journal of Remote Sensing, 22(13), 2489-2507.
    Joyce, K. E., S. E. Belliss, S. V. Samsonov, S. J. McNeill, and P. J. Glassey (2009), A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters, Progress in Physical Geography, 33(2), 183-207.
    Kumar, K. V., T. R. Martha, and P. S. Roy (2006), Mapping damage in the Jammu and Kashmir caused by 8 October 2005 M-w 7.3 earthquake from the Cartosat-1 and Resourcesat-1 imagery, International Journal of Remote Sensing, 27(20), 4449-4459.
    Leberl, F. (1990), Radargrammetric image processing., Artech House, , Boston, USA.
    Lee, J. S. (1981), Refined filtering of image noise using local statistics, Computer Graphics and Image Processing, 15(4), 380.
    Lillesand, T., R. Kiefer, and J. Chipman (2004), Remote Sensing and Image Interpretation.
    Martinis, S., A. Twele, and S. Voigt (2009), Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data, Nat. Hazards Earth Syst. Sci., 9(2), 303-314.
    Martinis, S., A. Twele, and S. Voigt (2011), Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov Image Modeling on Irregular Graphs, Ieee Transactions on Geoscience and Remote Sensing, 49(1), 251-263.
    Mason (2007), Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry, Geoscience and Remote Sensing, IEEE Transactions on, 45(12), 3932.
    Mason, D. C., G. J. P. Schumann, J. C. Neal, J. Garcia-Pintado, and P. D. Bates (2012), Automatic near real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: A case study, Remote Sens. Environ., 124, 705-716.
    Mason, D. C., R. Speck, B. Devereux, G. J. P. Schumann, J. C. Neal, and P. D. Bates (2010), Flood Detection in Urban Areas Using TerraSAR-X, IEEE Transactions on Geoscience and Remote Sensing, 48(2), 882-894.
    Mather, P. M. (1988), Introduction tp the physics and techniques of remote-sensing - Elachi,C, Nature, 332(6160), 188-188.
    Nico, G., M. Pappalepore, G. Pasquariello, A. Refice, and S. Samarelli (2000), Comparison of SAR amplitude vs. coherence flood detection methods - a GIS application, International Journal of Remote Sensing, 21(8), 1619-1631.
    Pal, N. R. a. P., S. K. (1993), A review on image segmentation techniques, Pattern Recogn, 26, 1277–1294.
    Pulvirenti, L., N. Pierdicca, M. Chini, and L. Guerriero (2011), An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic, Nat. Hazards Earth Syst. Sci., 11(2), 529-540.
    Rango, A., and Salomons (1974), Regional flood mapping from space, Water Resources Research, 10(3), 473-484.
    Rocchini, D., and A. Di Rita (2005), Relief effects on aerial photos geometric correction, Applied Geography, 25(2), 159-168.
    Sahoo, S. P. K., W. S., A. K. C., and Y. C. Chen (1988), A survey of thresholding techniques, Vision Graph, 41, 233-260.
    Schumann, G., P. D. Bates, M. S. Horritt, P. Matgen, and F. Pappenberger (2009), Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models, Reviews of Geophysics, 47.
    Schumann, G., R. Hostache, C. Puech, L. Hoffmann, P. Matgen, F. Pappenberger, and L. Pfister (2007), High-resolution 3-D flood information from radar imagery for flood hazard management, Ieee Transactions on Geoscience and Remote Sensing, 45(6), 1715-1725.
    Singhroy, V. (1995), SAR integrated techniques for geohazard assessment, Advances in Space Research, 15(11), 67.
    Singhroy, V. (1998), Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images, Advances in Space Research, 21(3), 465.
    Townsend, P. A. (2002), Estimating forest structure in wetlands using multitemporal SAR, Remote Sens. Environ., 79(2-3), 288-304.
    Voigt, S., T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl (2007), Satellite image analysis for disaster and crisis-management support, Ieee Transactions on Geoscience and Remote Sensing, 45(6), 1520-1528.
    Wang, Q., M. Watanabe, S. Hayashi, and S. Murakami (2003), Using NOAA AVHRR data to assess flood damage in China, Environmental Monitoring and Assessment, 82(2), 119-148.
    林家慶 (2007), 應用福衛二號時間序列影像監測曾文水庫集水區崩塌地之時空變化, 成功大學, 台南.
    陳柏澧 (2009), 福爾摩沙二號衛星數值高程模型與幀攝影像產品之產製與精度評估, 成功大學, 台南.

    下載圖示 校內:2018-09-05公開
    校外:2018-09-05公開
    QR CODE