| 研究生: |
蔡孟哲 Tsai, Meng-Che |
|---|---|
| 論文名稱: |
奈米模版微影製程之開發與應用 Development of Nano-Stencil Lithography and its Application |
| 指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 奈米模版微影術 、奈米模版 、奈米線 |
| 外文關鍵詞: | Nano-Stencil Lithography, nano-stencil, nanowire |
| 相關次數: | 點閱:102 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米模版微影術是利用具奈米孔洞的薄膜作為模版,在低成本情況下,製作出大面積奈米結構的一種奈米製程。而模版的靈活性與高製程產量,使此技術適合做為工業上之應用。
因此,本論文將奈米模版微影術之發展,分成兩個部分來討論,首先我們將介紹如何使用黃光微影術來製作奈米尺度的模版。透過精心設計的光罩,我們可以在絕緣層上矽(SOI)基板,利用幾個微米寬的矩形方框圖案,做出奈米等級之縫隙。此縫隙之平均長度約在25到45微米,寬度約在0.8到1微米,而我們能夠製作出最小寬度約為200奈米左右。
在論文的第二部分,我們將說明如何成功透過奈米模版微影術製作出精確的奈米結構。而透過第一部份製造出的奈米模版,我們已經成功製作出長度與寬度分別在30到50微米與0.7到1.2微米之金屬奈米線,而奈米線的最小線寬約在270奈米左右。由於模版製作是透過絕緣層上矽(SOI)基板之元件層(device layer)來實現,厚度為微米等級,故模版結構是足夠堅固能抵抗金屬濕式蝕刻,因此模版可以被重複使用至少5次以上。
我們還成功將金屬奈米線,轉移成半導體奈米線場效應電晶體,並測試其電學特性。此外,我們還展示了奈米圓盤陣列結構,而此奈米模版是透過本實驗室其他研究團隊,發展出之奈米球鏡微影術所製作。
綜上所論,本論文已詳細討論奈米模版之製程,以及透過奈米模版微影術所製作出之奈米結構,我們堅信,此發展在不久的未來將能被引入,應用於業界。
Nano-stencil lithography (NSL) is a nanofabrication method that utilizes nanoscale openings on a thin membrane as stencils to fabricate large-scale nanostructures with low fabrication cost. The design flexibility and the high fabrication throughputs have enabled this technique to be suitable for industrial applications. Therefore, the developments of NSL are detailed discussed in this thesis, which consists with two separated topics. First, we will introduce how to fabricate the nanoscale stencils using conventional ultraviolet photolithography. By carefully design the mask patterns for photolithography, we can fabricate nano-slits by using rectangular pattern with width of several microns on a silicon-on-insulator wafer. The nominal length and width of the nano-slits are 25 to 45 micron and 0.8 to 1 micron, respectively. The minimum width we can fabricate is around 200nm.
In the second part of the thesis, we will demonstrate how to successfully fabricate precise nanostructures using NSL. By using the fabricated nano-stencil discussed in the first part of the thesis, we have successfully fabricated metal nano-wires with nominal length and width of 30 to 50 micron and 1 to 1.2 micron, respectively. The minimum width of the nanowire is around 270 nm. Because these nano-stencils are fabricated with micron-thick device layer of a SOI wafer, they are strong enough to withstand wet metal etch. Therefore, they can be re-used for at least 5 times. We also successfully transferred these metal nanowires into semiconductor nanowire field-effect transistors and tested their electrical properties. In addition, we also demonstrated the fabrication of nano-disk arrays using the nano-stencil prepared by Nanospherical-Lens Lithography that is developed in our research group.
In summary, the fabrications of nano-stencils and nanostructures using Nano-stencil Lithography are detailed discussed in this thesis. We firmly believe these developments will lead to industrial applications in the near futures.
[1] S. Brittman, H. Gao, E. C. Garnett, and P. Yang, “A Double-Strip Plasmonic Waveguide Coupled to an Electrically Driven Nanowire LED.” 2013.
[2] L. Ping-Jian, L. Zhi-Min, Z. Xin-Zheng, Z. Xue-Jin, Z. Hui-Chao, G. Jing-Yun, K. Laurent, Y. Leprince-Wang, N. Wang, and Y. Da-Peng, “Electrical and Photoresponse Properties of an Intramolecular p-n Homojunction in Single Phosphorus-Doped ZnO Nanowires.” 2009.
[3] N. You-Shin, C. Jae-Hyuck, E. Ho-Seok, H. Min-Soo, J. Kwang-Yong, L. Eun-Khwang, S. Min-Kyo, K. Soon-Hong, and P. Hong-Gyu, “Absorption of Light in a Single-Nanowire Silicon Solar Cell Decorated with an Octahedral Silver Nanocrystal.” 2011.
[4] G. M. Kim, M. A. F. van den Boogaart, and J. Brugger, “Fabrication and application of a full wafer size micro/nanostencil for multiple length-scale surface patterning.” 2003.
[5] B. Viallet, J. Grisolia, L. Ressier, M. A. F. Van Den Boogaart, J. Brugger, and T. Lebraud, “Stencil-assisted reactive ion etching for micro and nano patterning.” 2008.
[6] O. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, and A. Manseri, “Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching.” 2010.
[7] S. Jebril, M. Elbahri, G. Titazu, K. Subannajui, S. Essa, F. Niebelschu¨tz, C.-C. Ro¨hlig, V. Cimalla, O. Ambacher, B. Schmidt, D. Kabiraj, D. Avasti, and R. Adelung, “Integration of Thin-Film-Fracture-Based Nanowires into Microchip Fabrication.” 2008.
[8] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, and J. Brugger, “Metallic Nanowires by Full Wafer Stencil Lithography.” 2008.
[9] G. Villanueva, O. Vazquez-Mena, M. A. F. van den Boogaart, K. Sidler, K. Pataky, V. Savu, and J. Brugger, “Etching of sub-micrometer structures through Stencil.” pp. 1010–1014, 2008.
[10] Shenqi Xie, V. Savu, W. Tang, O. Vazquez-Mena, K. Sidler, H. Zhang, and J. Brugger, “Robust PECVD SiC membrane made for stencil lithography.” 2011.
[11] M. A. F. van den Boogaart, M. Lishchynska, L. M. Doeswijk, J. C. Greer, and J¨. Brugger, “Corrugated membranes for improved pattern definition with micro/nanostencil lithography.” 2006.
[12] Shawn Fostner, S. A. Burke, J. Topple, J. M. Mativetsky, J. Beerens, and P. Grutter, “Silicon nanostencils with integrated support structures.” ieee, 2010.
[13] O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic Nanodot Arrays by Stencil Lithography for Plasmonic Biosensing Applications.” 2011.
[14] O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks.” 2012.
[15] 吳昌崙、張景學, “半導體製程技術.” 新文京開發, 2003.
[16] 李世鴻, “積體電路製程技術.” 五南圖書公司, 1998.
[17] H. Robbins and B. Schwartz, “Chemical Etching of Silicon I. The System HF,HNO3, and H20.” 1959.
[18] H. Robbins and B. Schwartz, “Chemical Etching of Silicon II. The System HF, HNO3, H20, and HC2H3O2.” 1960.
[19] B. Schwartz and H. Robbins, “Chemical Etching of Silicon III. A Temperature Study in the Acid System.” 1961.
[20] 陳柏穎、邱源成、李榮宗, “矽晶圓非等向性濕式蝕刻特性研究.” 國立中山大學機械與機電工程研究所 碩士論文, 2003.
[21] B. Schwartz and H. Robbins, “Chemical Etching of Silicon IV. Etching Technology.” 1976.
[22] 楊啟榮、陳柏穎, “微機電製程之溼式矽微加工技術.” 國立中山大學.
[23] K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, “Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation.” 1999.
[24] C. Ping-Hei, P. Hsin-Yah, H. Chia-Ming, and C. Minking K., “The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer.” 2001.
[25] 謝嘉銘、陳炳輝, “TMAH非等向性濕蝕刻特性之研究與應用.” 國立台灣大學機械工程學研究所 碩士論文, 2000.
[26] 周君穎、詹莉芬、葉名倉, “聚二甲基矽氧烷 (Poly(Dimethylsiloxane).” 國科會高瞻自然科學教學資源平台.
[27] “微機電拾遺錄(22)-聚二甲基矽氧烷(PDMS)微加工技術.” 機械月刊2009年04月號.
[28] 廖宜銘、紀國鐘, “紫外穿透低應力氮化矽鼓膜之研究與應用.” 國立中央大學物理研究所 碩士論文, 2004.
[29] 張倍榕、陳隆建, “利用溶膠凝膠法製作用於氮化鎵發光二極體之氧化鋅緩衝層.” 國立台北科技大學光電工程系研究所 碩士論文, 2007.
[30] 汪建民, “材料分析” 中國材料科學學會.