簡易檢索 / 詳目顯示

研究生: 黃博偉
Huang, Bo-Wei
論文名稱: 竹纖維表面處理對吸水率與機械性質探討
Surface Treatment on Moisture Absorption and Mechanical Properties of Bamboo Fibers
指導教授: 楊文彬
Yang, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 竹纖維鹼處理矽烷處理油處理吸水率竹纖維複合材料
外文關鍵詞: bamboo fiber, alkali treatment, silane treatment, oil treatment, moisture absorption, bamboo fiber composites
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 竹纖維本身是由天然聚合物所組成的植物纖維,植物纖維裡的纖維素與半纖維素使竹纖維擁有良好的吸水性,而材料的機械強度容易受到水份的影響而衰退,因此本研究的主要目的在於透過表面處理對竹纖維進行改性,有效地降低其吸水率並利用樹脂轉注成型法與環氧樹脂結合,製作成竹纖維複合材料。研究內容分為四個部分。首先,在第一部分中,我們量測了經過矽烷和緻密化處理竹纖維的拉伸強度、吸水率和密度。實驗結果表明,經過矽烷與緻密化處理後,竹纖維的機械強度與密度會上升,而經過矽烷處理後吸水率會降低。在第二部分中,我們量測了經過矽烷和油處理竹纖維的拉伸強度、吸水率和密度。實驗結果表明,油處理會導致竹纖維的機械強度下降,但由於竹纖維吸收了大量的油脂,使竹纖維的吸水率降低並且密度會提高。在第三部分中,我們探討了竹纖維與樹脂之間的結合程度,實驗結果表明,經過矽烷處理後的竹纖維與樹脂有著較好的結合程度。最後,在第四部分中,我們選擇吸水率降低效果顯著且與樹脂結合程度較好的酪梨油-Silane6341製程作為複合材料的補強材料,製備成複合材料並探討高溫浸潤下機械強度的衰退程度與吸水率。研究結果顯示,表面預處理對於竹纖維複合材料的防水性能有明顯的改善。

    The purpose of this study is to effectively reduce the moisture absorption of bamboo fibers and composites through surface treatment. By using surface treatments such as Silane, densification, and oil treatment, we investigated the mechanical properties and water absorption rate of bamboo fibers. Subsequently, we selected avocado oil-Silane6341, which exhibited significantly reduced moisture absorption and improved compatibility with resin, to prepare the composite material. The study then investigated the degree of mechanical strength decay and moisture absorption under high-temperature immersion. The results show that surface pre-treatment significantly improves the water resistance of the bamboo fiber composite.

    中文摘要 I ABSTRACT II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XIII 第一章、緒論 1 1-1前言 1 1-2研究目的 2 1-3研究方法 2 1-4文獻回顧 7 1-4-1竹纖維相關文獻 7 1-4-2竹纖維表面處理相關文獻 9 1-4-3竹纖維複合材料相關文獻 12 第二章、研究簡介 16 2-1桂竹介紹 16 2-2竹細胞結構介紹 17 2-3鹼處理介紹 19 2-4表面處理介紹 19 2-5材料性質測試 21 2-6樹脂轉注成型法介紹 23 2-7複合材料軸向強度介紹 24 第三章、研究規劃與製程設計 26 3-1竹纖維製造 26 3-1-1實驗材料與設備 26 3-1-2萃取竹纖維製程 28 3-1-3竹纖維鹼處理 30 3-2竹纖維矽烷與緻密化製程 31 3-2-1實驗材料與設備 31 3-2-2竹纖維矽烷處理 34 3-2-3竹纖維緻密化處理 34 3-3竹纖維矽烷與油介質製程 35 3-3-1實驗材料與設備 35 3-3-2油介質處理流程 36 3-3-3油介質處理不同時間參數 37 3-4竹纖維複合材料製造 37 3-4-1實驗材料與設備 38 3-4-2纖維/樹酯結合度製程 43 3-4-3複合材料製程 46 3-5竹纖維性質量測 49 3-5-1驗材料與設備 49 3-5-2竹纖維物理性質量測 51 3-5-3吸水率量測流程 52 3-5-4拉伸試片製作 53 3-5-5拉伸試驗流程 54 3-6竹纖維複合材料性質量測 56 3-6-1實驗材料與設備 56 3-6-2纖維/樹酯結合度量測 58 3-6-3單向竹纖維複合材料試片製作 59 3-6-4吸水率量測流程 60 3-6-5拉伸試驗 61 第四章、實驗結果與討論 62 4-1竹纖維性質量測結果 62 4-1-1物理性質量測結果 62 4-1-2吸水率量測結果 64 4-1-3拉伸試驗結果 68 4-2竹纖維複合材料性質量測結果 72 4-2-1纖維/樹酯結合度量測結果 72 4-2-2吸水率量測結果 73 4-2-3拉伸試驗結果 75 第五章、結論與展望 77 5-1結論 77 5-2未來展望 79 參考文獻 80 附錄 84

    [1] 劉國雄(2013)。工程材料科學。全華圖書。
    [2] Takagi, H., & Ichihara, Y. (2004). Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME International Journal Series A Solid Mechanics and Material Engineering, 47(4), 551-555.
    [3] Khalil, H. A., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials & Design, 42, 353-368.
    [4] Osorio, L., Trujillo, E., Van Vuure, A. W., & Verpoest, I. (2011). Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. Journal of reinforced plastics and composites, 30(5), 396-408.
    [5] Yueping, W., Ge, W., Haitao, C., Genlin, T., Zheng, L., Feng, X. Q., Xiangqi, Z., Xiaojun, H., Xushan, G. (2010). Structures of bamboo fiber for textiles. Textile research journal, 80(4), 334-343.
    [6] Chen, H., Yu, Y., Zhong, T., Wu, Y., Li, Y., Wu, Z., & Fei, B. (2017). Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose, 24, 333-347.
    [7] Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied science and manufacturing, 35(3), 377-383.
    [8] Li, Z., Liu, C. P., & Yu, T. (2002). Laminate of reformed bamboo and extruded fiber-reinforced cementitious plate. Journal of materials in civil engineering, 14(5), 359-365.
    [9] Kushwaha, P. K., & Kumar, R. (2009). Studies on moisture absorption of bamboo-polyester composites: effect of silane treatment of mercerized bamboo. Polymer-Plastics Technology and Engineering, 49(1), 45-52.
    [10] Kushwaha, P. K., & Kumar, R. (2010). Effect of silanes on mechanical properties of bamboo fiber-epoxy composites. Journal of reinforced plastics and composites, 29(5), 718-724.
    [11] Xie, Y., Hill, C. A., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.
    [12] Yang, T. H., Lee, C. H., Lee, C. J., & Cheng, Y. W. (2016). Effects of different thermal modification media on physical and mechanical properties of moso bamboo. Construction and Building Materials, 119, 251-259.
    [13] Bai, T., Wang, D., Yan, J., Cheng, W., Cheng, H., Shi, S. Q., ... & Han, G. (2021). Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites. Composites Science and Technology, 213, 108951.
    [14] Chen, T., Wu, Y., Qiu, J., Fei, M., Qiu, R., & Liu, W. (2020). Interfacial compatibilization via in-situ polymerization of epoxidized soybean oil for bamboo fibers reinforced poly (lactic acid) biocomposites. Composites Part A: Applied Science and Manufacturing, 138, 106066.
    [15] Liu, D., Song, J., Anderson, D. P., Chang, P. R., & Hua, Y. (2012). Bamboo fiber and its reinforced composites: structure and properties. Cellulose, 19, 1449-1480.
    [16] Chin, S. C., Tee, K. F., Tong, F. S., Ong, H. R., & Gimbun, J. (2020). Thermal and mechanical properties of bamboo fiber reinforced composites. Materials Today Communications, 23, 100876.
    [17] Chen, X., Guo, Q., & Mi, Y. (1998). Bamboo fiber‐reinforced polypropylene composites: A study of the mechanical properties. Journal of applied polymer science, 69(10), 1891-1899.
    [18] Kushwaha, P. K., & Kumar, R. (2011). Influence of chemical treatments on the mechanical and moisture absorption properties of bamboo fiber composites. Journal of Reinforced Plastics and Composites, 30(1), 73-85.
    [19] Sukmawan, R., Takagi, H., & Nakagaito, A. N. (2016). Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Composites Part B: Engineering, 84, 9-16.
    [20] Ochi, S. (2012). Tensile properties of bamboo fiber reinforced biodegradable plastics. International Journal of Composite Materials, 2(1), 1-4.
    [21] 台灣桂竹維基百科。
    https://zh.wikipedia.org/wiki/%E5%8F%B0%E7%81%A3%E6%A1%82%E7%AB%B9#cite_note-%E8%87%BA%E7%81%A3%E6%A8%B9%E6%9C%A8%E8%AA%8C-1
    [22] 吳勝傑。台灣大百科全書-桂竹。
    https://nrch.culture.tw/twpedia.aspx?id=6475
    [23] Liese, W. (1987). Research on bamboo. Wood Science and Technology, 21(3), 189-209.
    [24] Tsuchikawa, S., & Kobori, H. (2015). A review of recent application of near infrared spectroscopy to wood science and technology. Journal of Wood Science, 61(3), 213-220.
    [25] Wegst, U. G. (2011). Bending efficiency through property gradients in bamboo, palm, and wood-based composites. Journal of the mechanical behavior of biomedical materials, 4(5), 744-755.
    [26] Chen, G., Luo, H., Yang, H., Zhang, T., & Li, S. (2018). Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo. Acta Biomaterialia, 65, 203-215.
    [27] Das, M., & Chakraborty, D. (2006). Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science, 102(5), 5050-5056.
    [28] Das, M., & Chakraborty, D. (2008). Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. Journal of applied polymer science, 107(1), 522-527.
    [29] Li, Y., Jiang, L., Xiong, C., & Peng, W. (2015). Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly (lactic-co-glycolic) composite. Industrial & Engineering Chemistry Research, 54(48), 12017-12024.
    [30] Yin, Y., Huang, R., Zhang, W., Zhang, M., & Wang, C. (2016). Superhydrophobic–superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate. Chemical Engineering Journal, 289, 99-105.
    [31] Wong, A. K., & Krull, U. J. (2005). Surface characterization of 3-glycidoxypropyltrimethoxysilane films on silicon-based substrates. Analytical and bioanalytical chemistry, 383, 187-200.
    [32] 酪梨油維基百科。
    https://nrch.culture.tw/twpedia.aspx?id=6475
    [33] 亞麻仁油維基百科。
    https://nrch.culture.tw/twpedia.aspx?id=6475
    [34] Chawla, K. K. (2012). Composite materials: science and engineering. Springer Science & Business Media.
    [35] Hoa, S. V. (2009). Principles of the manufacturing of composite materials. DEStech Publications, Inc.
    [36] Potter, K. (2012). Resin transfer moulding. Springer Science & Business Media.
    [37] Sapuan, S. M., and Muhd Ridzuan Mansor, eds. Design for Sustainability: Green Materials and Processes. Elsevier, 2021.
    [38] R. F. Gibson, Principles of composite material mechanics. CRC press, 2016.
    [39] Obul Reddy(2021)。矽烷/鹼處理竹纖環氧複合材料的吸水率研究。
    [40] 詹佳勳(2022)。竹纖維緻密化與機械性質探討。
    [41] 黃俊凱(2018)。長纖竹纖維增強環氧樹脂複合材料製備及特性研究。
    [42] 周紫濃(2015)。竹纖維拉伸強度之研究。

    下載圖示 校內:2025-08-02公開
    校外:2025-08-02公開
    QR CODE