簡易檢索 / 詳目顯示

研究生: 謝竣仰
Sie, Jun-Yang
論文名稱: 改良式逆壓印技術應用於無殘餘層圖案轉移
The Transferred Pattern without Residual Layer of Polymer by Improved Reversal Imprinting Process
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 136
中文關鍵詞: 逆式壓印殘餘層
外文關鍵詞: Reversal imprinting, residual layer
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在元件尺寸縮小時代,光微影技術因受限光學特性限制,而需耗費龐大設備成本才能製作圖案在製程研究上,近十年來,奈米壓印技術崛起就是具有低成本及高產能製程技術。
    在製程研究上,莫非是製程簡化、成本縮短與高產能;在本論文研究中就是希望改良製程技術去縮短製程、成本。第一部份:利用不同種類矽烷分子特性改質模具表面,使溶於氯苯PMMA阻劑,能均勻塗佈於模具上,並結合滾輪製程具有適合大面積壓印及連續大量生產能力製程,可以快速的將大尺寸模具及任意微奈米圖案完全的轉移至所使用的塑膠基板上,且不需要操作在高溫、高施力的環境及不需要冗長的持壓時間;並且調變PMMA阻劑濃度與塗佈轉速,可以控制PMMA阻劑之殘餘層厚度;第二部份:將模具的凹槽、凸層以不同種類矽烷分子鍵結,藉由不同種類矽烷分子特性與不同矽烷分子之反應差異性,使以PMMA為阻劑時,得以選擇性僅填入模具之凹槽,並再輔以非溶劑型阻劑(Epoxy)塗佈於其上,以此方式將無殘餘層之圖案轉移至所使用的基板上,成功的發展出無殘餘層之逆式壓印圖案轉移技術。進一步利用此無殘餘層之逆式壓印技術直接疊印於非平整之表面,可以直接呈現疊印出3D立體結構圖案化阻劑,而不需進一步的蝕刻動作。

    Nowadays, the semiconductor industry is in full swing to pursue the miniaturization of electronic devices. However the most colossal difficulty is right in patterning technologies which used to carry out nanoscale patterns on resist material. Nanoprinting is a burgeoning lithographic technique, and it promises high-throughput of nanostructures pattering with simple apparatus setting. Nanoimprint technique can achieve high patterning resolutions without the limitations of light diffractions or beam scatterings utilized in conventional techniques.
    Undoubtedly, a superior process must possess some advantageous features, such as including simplicity, low-cost, and high-throughput.
    Therefore, we mainly exploit anti-sticking surface mold to apply in reversal imprinting process. Our work could be generally divided into
    two subjects.
    Firstly, we develop reversal imprint technique with rolling process. The patterned mold was treated with OTS and DMDS silanes, with different alkyl length respectively, in the ratio 1:1. We dissolved PMMA in chlorobenzene and spin coat it uniformly on imprinting mold which can be easily peeled off after rolling process. Finally, our high-throughput and continuous process could transfer any microscale or nanoscale pattern (6μm-400nm) such as dot-, stripe-, and tetrahedron-like to target substrate. Consequently, the lower the temperature and pressure we adopt, the less pattern distortion occurs. And the thickness of residual layer could be reduced less than 200 nm through controlling the concentration of PMMA and spin coating speed. Furthermore, it is easy to fully transfer
    the whole patterns from large scale mold without defects.
    Secondly, our other goal is to transfer polymer pattern to a variety of substrates without residue via reversal imprinting process at low temperature and pressure. According to different silanes possess distinct functional groups; it could lead to different surface chemical bonding through solution method we utilize here. We modify the concave facet with FOTS different from the protruding facet treated by OTS silane. Thus PMMA can be filled into concavity selectively through spin coating firstly. In sue we stack up epoxy layer which adhere to substrate, and finally we transfer the pattern without residual layer. Ultimately, we can directly construct 3D pattern on patterned substrate without the need to etch residual layer or remove sacrificial film.

    目 錄 中文摘要..................................................I 英文摘要.................................................II 誌謝.....................................................IV 目錄.....................................................VI 表目錄...................................................XI 圖目錄..................................................XII 第一章 序論.............................................1 1-1 前言.................................................1 1-2 微奈米壓印技術之發展現況.............................2 1-3 微奈米壓印之關鍵技術.................................5 1-4 研究動機.............................................8 第二章 理論基礎與文獻回顧................................10 2-1 前言.................................................10 2-2 壓印技術簡介.........................................10 (Ⅰ) 熱壓成形奈米轉印....................................10 (Ⅱ)紫外光硬化成形奈米轉印.............................12 (Ⅲ)軟微影技術.........................................14 2-3 改良式的壓印技術.....................................16 (1)壓印技術及光微影蝕刻技術結合........................17 (2)逆壓式壓印技術......................................18 (3)高分子沾墨技術......................................18 2-4 模具製作技術.........................................20 2-5 脫膜層製作技術及原理.................................22 2-6 電漿原理.............................................26 2-7 電漿中的化學反應.....................................30 2-7-1電漿反應的特性.............................30 2-7-2氣相中的化學反應...........................31 2-8 表面分析.............................................32 2-8-1 表面張力...........................................32 2-8-2 接觸角(Contact angle)............................33 第三章 實驗參數與研究方法................................44 3-1 實驗流程.............................................44 3-1-1 滾輪逆式壓印技術應用於製作微奈米圖案之製作.......................................................44 3-1-2 無殘餘層圖案轉移及疊印3D圖案之製作........45 3-2 實驗系統設計.........................................46 3-2-1 壓印機....................................46 3-2-2 滾輪機....................................46 3-2-3 氧電漿處理及乾式蝕刻(RIE)系統...........46 3-2-3-1 抽氣系統................................47 3-2-3-2 壓力監控系統............................47 3-2-3-3 流量控制系統............................47 3-2-3-4 脈衝式直流電源供應器....................47 3-3 實驗材料.............................................47 3-3-1 基板材料..................................47 3-3-3 基板清洗溶劑及實驗氣體....................49 3-4 實驗步驟.............................................49 3-4-1 脫膜層製備................................49 3-4-2 利用滾輪逆式壓印技術進行圖案轉印..........51 3-4-3 進行殘餘層厚度實驗分析實驗................51 3-4-4 利用逆壓印技術進行無殘餘層圖案轉印實驗....51 3-4-4-1 製備模具凸層凹槽不同脫膜層.......................52 3-4-4-2 無殘餘層圖形轉印.................................53 3-5 實驗鑑定.............................................53 3-5-1 表面型態觀察..............................53 3-5-2 表面靜態與動態接觸角分析..................56 第四章 滾輪逆式壓印技術應用於製作微奈米圖案之製作........65 4-1 模具表面改質探討.....................................66 4-1-1 實驗部分..................................67 4-1-2 接觸角分析探討............................67 4-1-3 矽烷分子反應探討..........................68 4-1-4 矽烷分子熱穩定探討........................69 4-2 滾輪逆式壓印法轉移圖案之探討.........................69 4-2-1 光學與SEM之表面探討與分析.................71 4-2-2 表面輪廓儀對於高分子殘餘層之探討..........72 4-3 小結.................................................73 第五章 無殘餘層圖案轉移及疊印3D圖案之製作................89 5-1 模具表面改質及阻劑選擇性填入模具凹槽探討.............90 5-1-1 接觸角分析實驗探討........................90 5-1-2 矽烷分子反應探討..........................92 5-1-3 粗糙度影響探討............................95 5-1-4 PMMA阻劑選擇性填入凹之探討...............96 5-2 阻劑於凹槽內情形之探討...............................97 5-3 無殘餘層圖案轉印之探討...............................99 5-4 3D立體圖案結構之製作及探討.........................101 5-5 小結................................................102 第六章 總結論...........................................127 第七章 參考文獻.........................................129 表目錄 表1-1 現今各種奈米壓印技術的優缺點比較....................9 表2-1 常見鍵結的鍵能.....................................41 表2-2 電漿中可能發生的反應...............................42 表3-1 高溫壓印機台相關資料表.............................59 表3-2 滾輪式壓印機1~6速度調節表.........................60 表4-1 去離子水與氯苯於模具表面接觸角分析及模具表面能.....75 表4-2 殘餘層厚度整理數據.................................88 表5-1 不同矽烷處理表面的接觸角分析......................104 表5-2 水在不同矽烷分子處理表面的動態接觸分析............107 表5-3 氯苯在不同矽烷分子處理表面的動態接觸角分析........108 圖目錄 圖1-1 光學微影製程光源與其相對線寬趨勢圖.................9 圖2-1 熱壓成形奈米轉印流程圖,NIL(Chou)...............36 圖2-2 紫外光硬化成形奈米轉印,S-FIL(C.G. Willson).....36 圖2-3 步進式重複壓印製程................................37 圖2-4 微接觸印刷使用具有彈性印章之製作過程..............37 圖2-5 微接觸印刷表面改質示意圖..........................38 圖2-6 壓印及光微影蝕刻結合技術圖案製作流程圖............38 圖2-7 逆式轉印技術示意圖................................39 圖2-8 高分子沾墨技術示意圖..............................39 圖2-9 (a) 模具選擇性表面處理造成非連續阻劑..............40 (b) 高分子沾墨技術流程圖.................................40 圖2-10 自組裝分子反應機制................................40 圖2-11 電漿產生之電壓對電流關係..........................41 圖 2-12 Young equation...................................42 圖2-13 量測動態接觸角,擴張/縮小法示意圖.................43 圖2-14 量測動態接觸角,滑動法示意圖......................43 圖3-1 高溫壓印機系統....................................59 圖3-2 滾輪式壓印機......................................60 圖3-3 高真空熱蒸鍍系統與反應性電漿處理及蝕刻系統........60 圖3-4 滾輪逆式壓印技術應用於製作微奈米圖案之製作........61 圖3-5 製備模具凸層凹槽不同脫膜層,造成阻劑選擇性填入示意圖.......................................................62 圖3-6 無殘餘層圖形轉印之製作示意圖......................63 圖3-7 利用逆式壓印技術疊印出3D立體結構圖案之示意圖......64 圖 4-1 不同改質模具10wt﹪PMMA塗佈情形...................75 圖4-2 滾輪逆式壓印圖案轉移實驗之流程圖..................76 圖4-3 利用一般壓印機疊合轉印,造成2μm 、5μm線寬圖形網羅 氣泡情況.................................................77 圖4-4 4吋模具微米級圖案---2μm、5μm線條..................77 圖4-5 模具與轉印阻劑圖案於基板圖........................78 圖4-6 以1000rpm-20wt﹪PMMA 阻劑轉印圖案之SEM分析圖......79 圖4-7 1000rpm-10wt﹪PMMA 阻劑轉印圖案之SEM分析圖........80 圖4-8 2000rpm-10wt﹪PMMA 阻劑轉印圖案之SEM分析圖........81 圖4-9 阻劑於邊緣斷掉,不連續膜產生現象導致圖案完整性很差82 圖4-10 1000rpm-7wt﹪PMMA 阻劑轉印圖案之SEM分析圖........83 圖4-11 1000rpm-5wt﹪PMMA 阻劑轉印圖案之SEM分析圖........84 圖4-12 2000rpm-5wt﹪PMMA 阻劑轉印圖案之SEM分析圖........85 圖4-13 微米模具-不同濃度、轉速對應之殘餘層厚度..........86 圖4-14 次微米模具-不同濃度、轉速對應之殘餘層厚度........86 圖4-15 滾輪逆式壓印轉印微奈米任意圖案...................87 圖5-1 水在不同矽烷分子處理表面的動態接觸角分析圖.......105 圖5-2 氯苯在不同矽烷分子處理表面的動態接觸角圖.........106 圖5-3 不同矽烷分子處理表面AFM分析圖....................109 圖5-4 矽烷分子反應機制.................................110 圖5-5 矽烷分子可能與基板反應機制.......................110 圖5-6 模具製作及利用3M taper轉移圖案示意圖.............111 圖5-7 10wt﹪PMMA/chlorobezene塗佈模具上,利用3M taper 轉印出無殘餘層圖案..........................................112 圖5-8 10wt﹪PS/chlorobezenew塗佈模具上,利用3M taper 轉印出無殘餘層圖案..........................................113 圖5-9 10wt﹪PMMA/toluene塗佈模具上,利用3M taper 轉印出有 殘餘層圖案..............................................114 圖5-10 PMMA阻劑選擇性填入模具凹槽內情形................115 圖5-11 環氧樹酯阻劑能選擇性填入於凹槽與PMMA阻劑附著之SEM分析圖....................................................116 圖5-12 無殘餘層圖案製作示意圖...........................117 圖5-13 PMMA+Epoxy阻劑依序填入凹槽內,圖案轉印於矽基板之 SEM圖...................................................118 圖5-14 PMMA+Epoxy 阻劑圖案轉印於矽基板之剖面圖,殘餘層厚 度約240nm ...............................................118 圖5-15 無殘餘層圖案轉印於矽基板之SEM分析圖.............119 圖5-16 無殘餘層圖案轉印之SEM分析剖面圖.................119 圖5-17 利用逆式壓印技術疊印出3D立體結構圖案之示意圖....120 圖5-18 未先預熱硬化,環氧樹酯阻劑具流動性填覆第一層PMMA 阻劑圖案情形之SEM分析圖.................................121 圖5-19 預熱硬化時間不足,3D立體結構雛形呈現但線條不筆直情 形之SEM分析圖...........................................121 圖5-20 45μm線寬與45μm交叉疊印3D立體結構圖案之SEM分析圖......................................................122 圖5-21 45μm線寬與30μm交叉疊印3D立體結構圖案之SEM分析圖......................................................123 圖5-22 30μm線寬與45μm交叉疊印3D立體結構圖案之SEM分析圖......................................................124 圖5-23 30μm線寬與30μm交叉疊印3D立體結構圖案之SEM分析圖......................................................125 圖5-24 文獻上3D圖案製作技術(a)需進一步RIE製程或(b)移除犧牲層才能呈現3D立體結構圖案..............................126

    第七章 參考文獻
    [1] G. M. Whitesides, J. C. Love, Scientific American,(2001) 39.
    [2] L. Jay Guo, J. Phys. D: Appl. Phys. 37 (2004) R123
    [3] L. Jay Guo, Proc. SPIE, 5734 (2005) 53
    [4] 粘金重,電子與材料雜誌,19期,2005
    [5] 陳守仁,吳兆棋,柯有倫,陳來勝,機械工業雜誌,279期
    2006
    [6] S. Y. Chou, P. R. Krauss, P. J. Restrom, Appl. Phys. Lett. 67 (1995) 3114
    [7] S.Y. Chou, P.R. Krauss, P. J. Restrom, J. Vac. Sci. Technol. B, 14 (1996) 4129.
    [8] S. Y. Chou, P.R. Krauss, P. J. Restrom, Science, 272 (1995) 85.
    [9] S. Zankovych, T. Hoffmanm, J. Seekamp, J. U. Bruch and C. M. Sotomayor Torres, Nanotechnology, 12 (2001) 91
    [10] A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 63 (1993) 2002.
    [11] Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss and G. M. Whitesides, Science, 273 (1996) 347..
    [12] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, J. Vac. Sci. Technol. B, 18 (2000) 3572.
    [13] S. Johnson, D. J. Resnick, D. Mancini, K. Nordquist, W. J. Dauksher, K. Gehoski, J. H. Baker, L. Dues, A. Hooper, T. C. Bailey, J. G. Ekerdt, C. G. Willson, Microelectronic Eng., 67–68 (2003) 221
    [14] R.W. Jaszewski , H. Schift , B. Schnyder, A. Schneuwly, P. Groning, Appl. Surf. Sci.,143 (1999) 301
    [15] M. Beck, IEEE-NANO, S1.2 (2002) 17
    [16] L. A. Poter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Nano Lett., 2 (2002) 1369
    [17] H. Zhang, S. W. Chung, C. A. Mirkin, IEEE Journal of Selected Topics in Quantum Electronics, 10 (2003) 3, 43
    [18] Michael D. Austin, Haixiong Ge, Wei Wu, Mingtao Li, Zhaoning Yu, D. Wasserman, S. A. Lyon, and Stephen Y. Chou, Appl. Phys. Lett. 84 (2004) 5299
    [19] Douglas J.Resnick, S.V.Sreenivasan, C.Grant Willson, Materials Today (2005)
    [20] C. G. Willson, M. E. Colburn, United States Patent, (2002) 6, 334, 960
    [21] P. Ruchhoefft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J. C. Wolfe, C. G. Willson, J. Vac .Sci. Technol. B, 17 (1996) 2965
    [22] M. Colburn, A. Grot, B. J. Chio, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, J. Vac .Sci. Technol. B, 19 (2001) 2162
    [23] S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, SPIE Microlithography Conference, 2003
    [24] D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquista, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, N. Schumaker, SPIE Microlithography Conference, 2003
    [25] I. McMackin, P. Schumaker, D. Babbs, J. Choi, W. Collison, S. V.
    Sreenivasan, N. Schumaker, M. Watts,R. Voisin, SPIE Microlithography Conference, 2003
    [26] Y. N. Xia, J. Tien, D. Qin, G. M. Whitesides, Langmuir, 12 (1996) 4033
    [27] Y. N. Xia, M. Mrksich, E. Kim, G. M. Whitesides, J. Am. Chem. Soc., 117 (1995) 9576
    [28] A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir, 10 (1994) 1498
    [29] A. Carvalho, M. Geissler, H. Schmid, B. Michel, E. Delamarche, Langmuir, 18 (2002) 2406
    [30] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, J. Am. Chem. Soc. 124 (2002) 1576
    [31] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, G. M. Whitesides, Langmuir 18 (2002) 5314
    [32] T. W. Odom, V. R. Thalladi, J. C. Love, G. M. Whitesides, J. Am. Chem. Soc., 124 (2002) 12112
    [33] H-W Li, B. V. O. Muir, G. Fichet, W. T. S. Huck, Langmuir, 19 (2003) 1963
    [34] N. B. Larsen, H. Biebuyck, E. Delamarche, B. J. Michel, J. Am. Chem. Soc., 119 (1997) 3017
    [35] N. J. Jeon, K. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13 (1997) 3382
    [36] X. Cheng, L. J. Guo, Microelectron. Eng. 71(2004) 288
    [37] M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz Microelectron. Eng. 57(2001) 361
    [38] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang,A. F. Yee, J. Vac. Sci. Technol. B, 20 (2002) 2872
    [39] X. Y. Sun, L. Zhuang, W. Zhang, S. Y. Chou, J. Vac. Sci. Technol. B, 16(1998) 3922
    [40] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B, 20(2002) 2881
    [41] Xu. Yongan, Zhao. Wei, Y. L. Hong, Microelectron. Eng., 83 (2006) 542
    [42] N. L. Jeon, K. R. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13 (1997) 3382
    [43] L. R. Bao, L. Tan, X. D. Huang, Y. P. Kong, L. J. Guo, S. W. Pang,
    A. F. Yee J. Vac. Sci. Technol. B, 21(2003) 2749
    [44] Lon A. Porter, Jr. , Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribe, Lindsay C. C. Elliott, and Jilian M. Buriak, Nano, (2002)
    [45] Ikurou Umezu, Takashi Yoshida, Kimihisa Matsumoto, and Akira Sugimura, Mitsuru Inada, Appl. Phys. Lett., 81 (2002) 1492
    [46] M. Lazzarino, S. Heun, B. Ressel and K. C. Prince, P. Pingue, and C. Ascoli, Appl. Phys. Lett., 81 (2002) 2842
    [47] J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir,10 (1994) 4367
    [48] R. Stephen, Wasserman, Yu-Tai Tao, M. George, Whitesides, Langmuir, 5 (1989) 1074
    [49] R. Stephen, Wasserman, M. George, Whitesides, Ian M. Tidswel, Ben M. Ocko, Peter S. Pershan, John D. Axel, Langmuir, 111 (1989) 5852
    [50] P. Silberzan, JL . LBger, D. AusserrB, J. J. Benattarll, Langmuir, 7 (1991) 1647
    [51] Sergio Brandriss, Shlomo Margel, Langmuir, 9 (1991) 1232
    [52] Abraham Ulman, Chem. Rev.,96 (1996) 1553
    [54] Reena Banga, Jack Yarwood, Langmuir, 11 (1995) 4393
    [55] Uthara Srinivasan, Michael R. Houston, T. Roger, Howe, Fellow, Roya Maboudian, IEEE, 7 (1998) 1057
    [56] Mark J. Stevens, Langmuir, 15 (1999) 2773
    [57] Bong Hwan Kim, Taek Dong Chung, Chang Hoon Oh, Kukjin Chun, IEEE, 10 (2001) 33
    [58] In-Ha Sung, Ji-Chul Yang, Dae-Eun Kim, Bo-Sung Shin, Wear, 255 (2003) 808
    [59] Toshi Kasai, Bharat Bhushan, Gerit Kulik, Laura Barbieri, Patrik Hoffmann, J. Vac. Sci. Technol.B, 23 (2005) 995
    [60] O.P. Khatri, D. Devaprakasam, S.K. Biswas, Tribology Letters, 20 (2005) 235
    [61] W. Hild, S.I.-U. Ahmed, G. Hungenbach, M. Scherge, J.A. Schaefer, Tibotest, 12 (2006) 161
    [62] Y. X. Zhuang, O.Hansen, T.Knieling, C.Wang, P.Rombach, W.Lang, W.Benecke, M.Kehlenbeck, J.Koblitz, Journal of Micromechanics and Microengineering,16 (2006) 2259
    [63] Joëlle Fréchette, Roya Maboudian, Carlo Carraro, Journal of Microelectromechanical Systems,15 (2006) 737
    [64] Mark E. McGovern, M. R. Krishna, Kallury, M. Thompson, Langmuir, 10 (1994) 3607
    [65] B. C. Bunker, R. W. Carpick, R. A. Assink, M. L. Thomas, M. G. Hankins, J. A. Voigt, D. Sipola, M. P. de Boer, G. L. Gulley, Langmuir, 16 (2000) 7742
    [66] David L. Angst, Gary W. Simmons, Langmuir, 7 (1991) 2236
    [67] J. D. Le Grange, J. L. Markham, C. R. Kurkjian, Langmuir, 9 (1993) 1749
    [68] Michael R. Houston, Roger T. Howe, Roya Maboudian, J. Appl. Phys. 81 (1997) 3475
    [69] Gun-Young Jung, Zhiyong Li, Wei Wu, Yong Chen, Deirdre L. Olynick, Shih-Yuan Wang, William M. Tong, and R. Stanley Williams, Langmuir, 21 (2005) 1158
    [70] Joon-Seo Park, Andy Nguyen Vo, David Barriet, Young-Seok Shon,
    T. Randall Lee, Langmuir, 21 (2005) 2902
    [71] S. Kim, K. Cho, J. E. Curry, Langmuir, 21 (2005) 8290
    [72] D. K. fer, G. Witte, P. Cyganik, A. Terfort, C. Woll, J. Am. Chem. Soc. 128 (2006) 1723
    [73] Hirofumi Kubota, Journal of Luminescence, 87-89 (2000) 56
    [74]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, IEEE J. Sel. Top. Quant., 10 (2002) 107
    [75] 洪昭南,電漿反應器,化工技術,第三卷,第三期,124-135,1995
    [76] H. Yasuda, Plasma Polymerization, 1985.
    [77] J. R. Roth, Industrial Plasma Engineering-Volume, Institute of Physics Publishing, London, 1995.
    [78] S. J. Lee, B. G. Paik, G. B. Kim, Y. G. Jang, Jap. J. Appl. Physi. 45 (2006) 912
    [79] http://www.face-kyowa.com/en/learning/learning1.html
    [80] 鄭總輝、陳振鑾、陳致源、鄭欽峰,工業材料雜誌,218期,80-88頁,2005年2 月
    [81] 王武敬、金帷國、楊瑋鈞,化工資訊與商情,NO.27 2005年9月
    [82] H. Murase, T. Fujibayashi, Progress in Organic Coating, 31 (1997) 97
    [83] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir, 16 (2000) 5754
    [84] T. Kasai, B. Bhushan, G. Kulik, . Barbieri, P. Hoffmann, J. Vac. Sci. Technaol. B, 23 (2005) 995
    [85] W. Hu, B. Yang, C. Peng, S. W. Pang, J. Vac. Sci. Technaol. B, 24 (2006) 2225
    [86] A. Y. Fadeev, T. J. McCarthy, Langmuir, 16 (2003) 7268
    [87] W. Robert Ashurst, C. Carraro, Roya Maboudian, IEEE, 3 (2003) 173
    [88] A. Y. Fadeev, T. J. McCarthy, Langmuir, 16 (2000) 7268
    [89] J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir, 10 (1994) 4367
    [90] Johnson, R. E., Jr. Dettre, R. H. Adv. Chem. Ser. 43 (1963) 112.
    [91]L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technaol. B, 20 (2002) 2881
    [92]N. Kehagias, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahren, G. Gruetzner, J. Vac. Sci. Technaol. B, 23 (2005) 2954
    [93]M. Nakajima, T. Yoshikawa, K. Sogo, Y. Hirai, Microelectronic Engineering, 83 (2006) 876
    [94]C. Peng, S. W. Pang, J. Vac. Sci. Technaol. B, 24 (2006) 2968
    [95] B. Yang, S. W. Pang, J. Vac. Sci. Technaol. B, 24 (2006) 2085
    [96] Y. Xu, W.Zhao, Hong Y. Low, Microelectronic Engineering, 83 (2006) 542

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE