| 研究生: |
謝竣仰 Sie, Jun-Yang |
|---|---|
| 論文名稱: |
改良式逆壓印技術應用於無殘餘層圖案轉移 The Transferred Pattern without Residual Layer of Polymer by Improved Reversal Imprinting Process |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 逆式壓印 、殘餘層 |
| 外文關鍵詞: | Reversal imprinting, residual layer |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在元件尺寸縮小時代,光微影技術因受限光學特性限制,而需耗費龐大設備成本才能製作圖案在製程研究上,近十年來,奈米壓印技術崛起就是具有低成本及高產能製程技術。
在製程研究上,莫非是製程簡化、成本縮短與高產能;在本論文研究中就是希望改良製程技術去縮短製程、成本。第一部份:利用不同種類矽烷分子特性改質模具表面,使溶於氯苯PMMA阻劑,能均勻塗佈於模具上,並結合滾輪製程具有適合大面積壓印及連續大量生產能力製程,可以快速的將大尺寸模具及任意微奈米圖案完全的轉移至所使用的塑膠基板上,且不需要操作在高溫、高施力的環境及不需要冗長的持壓時間;並且調變PMMA阻劑濃度與塗佈轉速,可以控制PMMA阻劑之殘餘層厚度;第二部份:將模具的凹槽、凸層以不同種類矽烷分子鍵結,藉由不同種類矽烷分子特性與不同矽烷分子之反應差異性,使以PMMA為阻劑時,得以選擇性僅填入模具之凹槽,並再輔以非溶劑型阻劑(Epoxy)塗佈於其上,以此方式將無殘餘層之圖案轉移至所使用的基板上,成功的發展出無殘餘層之逆式壓印圖案轉移技術。進一步利用此無殘餘層之逆式壓印技術直接疊印於非平整之表面,可以直接呈現疊印出3D立體結構圖案化阻劑,而不需進一步的蝕刻動作。
Nowadays, the semiconductor industry is in full swing to pursue the miniaturization of electronic devices. However the most colossal difficulty is right in patterning technologies which used to carry out nanoscale patterns on resist material. Nanoprinting is a burgeoning lithographic technique, and it promises high-throughput of nanostructures pattering with simple apparatus setting. Nanoimprint technique can achieve high patterning resolutions without the limitations of light diffractions or beam scatterings utilized in conventional techniques.
Undoubtedly, a superior process must possess some advantageous features, such as including simplicity, low-cost, and high-throughput.
Therefore, we mainly exploit anti-sticking surface mold to apply in reversal imprinting process. Our work could be generally divided into
two subjects.
Firstly, we develop reversal imprint technique with rolling process. The patterned mold was treated with OTS and DMDS silanes, with different alkyl length respectively, in the ratio 1:1. We dissolved PMMA in chlorobenzene and spin coat it uniformly on imprinting mold which can be easily peeled off after rolling process. Finally, our high-throughput and continuous process could transfer any microscale or nanoscale pattern (6μm-400nm) such as dot-, stripe-, and tetrahedron-like to target substrate. Consequently, the lower the temperature and pressure we adopt, the less pattern distortion occurs. And the thickness of residual layer could be reduced less than 200 nm through controlling the concentration of PMMA and spin coating speed. Furthermore, it is easy to fully transfer
the whole patterns from large scale mold without defects.
Secondly, our other goal is to transfer polymer pattern to a variety of substrates without residue via reversal imprinting process at low temperature and pressure. According to different silanes possess distinct functional groups; it could lead to different surface chemical bonding through solution method we utilize here. We modify the concave facet with FOTS different from the protruding facet treated by OTS silane. Thus PMMA can be filled into concavity selectively through spin coating firstly. In sue we stack up epoxy layer which adhere to substrate, and finally we transfer the pattern without residual layer. Ultimately, we can directly construct 3D pattern on patterned substrate without the need to etch residual layer or remove sacrificial film.
第七章 參考文獻
[1] G. M. Whitesides, J. C. Love, Scientific American,(2001) 39.
[2] L. Jay Guo, J. Phys. D: Appl. Phys. 37 (2004) R123
[3] L. Jay Guo, Proc. SPIE, 5734 (2005) 53
[4] 粘金重,電子與材料雜誌,19期,2005
[5] 陳守仁,吳兆棋,柯有倫,陳來勝,機械工業雜誌,279期
2006
[6] S. Y. Chou, P. R. Krauss, P. J. Restrom, Appl. Phys. Lett. 67 (1995) 3114
[7] S.Y. Chou, P.R. Krauss, P. J. Restrom, J. Vac. Sci. Technol. B, 14 (1996) 4129.
[8] S. Y. Chou, P.R. Krauss, P. J. Restrom, Science, 272 (1995) 85.
[9] S. Zankovych, T. Hoffmanm, J. Seekamp, J. U. Bruch and C. M. Sotomayor Torres, Nanotechnology, 12 (2001) 91
[10] A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 63 (1993) 2002.
[11] Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss and G. M. Whitesides, Science, 273 (1996) 347..
[12] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, J. Vac. Sci. Technol. B, 18 (2000) 3572.
[13] S. Johnson, D. J. Resnick, D. Mancini, K. Nordquist, W. J. Dauksher, K. Gehoski, J. H. Baker, L. Dues, A. Hooper, T. C. Bailey, J. G. Ekerdt, C. G. Willson, Microelectronic Eng., 67–68 (2003) 221
[14] R.W. Jaszewski , H. Schift , B. Schnyder, A. Schneuwly, P. Groning, Appl. Surf. Sci.,143 (1999) 301
[15] M. Beck, IEEE-NANO, S1.2 (2002) 17
[16] L. A. Poter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Nano Lett., 2 (2002) 1369
[17] H. Zhang, S. W. Chung, C. A. Mirkin, IEEE Journal of Selected Topics in Quantum Electronics, 10 (2003) 3, 43
[18] Michael D. Austin, Haixiong Ge, Wei Wu, Mingtao Li, Zhaoning Yu, D. Wasserman, S. A. Lyon, and Stephen Y. Chou, Appl. Phys. Lett. 84 (2004) 5299
[19] Douglas J.Resnick, S.V.Sreenivasan, C.Grant Willson, Materials Today (2005)
[20] C. G. Willson, M. E. Colburn, United States Patent, (2002) 6, 334, 960
[21] P. Ruchhoefft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J. C. Wolfe, C. G. Willson, J. Vac .Sci. Technol. B, 17 (1996) 2965
[22] M. Colburn, A. Grot, B. J. Chio, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, J. Vac .Sci. Technol. B, 19 (2001) 2162
[23] S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, SPIE Microlithography Conference, 2003
[24] D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquista, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, N. Schumaker, SPIE Microlithography Conference, 2003
[25] I. McMackin, P. Schumaker, D. Babbs, J. Choi, W. Collison, S. V.
Sreenivasan, N. Schumaker, M. Watts,R. Voisin, SPIE Microlithography Conference, 2003
[26] Y. N. Xia, J. Tien, D. Qin, G. M. Whitesides, Langmuir, 12 (1996) 4033
[27] Y. N. Xia, M. Mrksich, E. Kim, G. M. Whitesides, J. Am. Chem. Soc., 117 (1995) 9576
[28] A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir, 10 (1994) 1498
[29] A. Carvalho, M. Geissler, H. Schmid, B. Michel, E. Delamarche, Langmuir, 18 (2002) 2406
[30] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, J. Am. Chem. Soc. 124 (2002) 1576
[31] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, G. M. Whitesides, Langmuir 18 (2002) 5314
[32] T. W. Odom, V. R. Thalladi, J. C. Love, G. M. Whitesides, J. Am. Chem. Soc., 124 (2002) 12112
[33] H-W Li, B. V. O. Muir, G. Fichet, W. T. S. Huck, Langmuir, 19 (2003) 1963
[34] N. B. Larsen, H. Biebuyck, E. Delamarche, B. J. Michel, J. Am. Chem. Soc., 119 (1997) 3017
[35] N. J. Jeon, K. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13 (1997) 3382
[36] X. Cheng, L. J. Guo, Microelectron. Eng. 71(2004) 288
[37] M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz Microelectron. Eng. 57(2001) 361
[38] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang,A. F. Yee, J. Vac. Sci. Technol. B, 20 (2002) 2872
[39] X. Y. Sun, L. Zhuang, W. Zhang, S. Y. Chou, J. Vac. Sci. Technol. B, 16(1998) 3922
[40] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B, 20(2002) 2881
[41] Xu. Yongan, Zhao. Wei, Y. L. Hong, Microelectron. Eng., 83 (2006) 542
[42] N. L. Jeon, K. R. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13 (1997) 3382
[43] L. R. Bao, L. Tan, X. D. Huang, Y. P. Kong, L. J. Guo, S. W. Pang,
A. F. Yee J. Vac. Sci. Technol. B, 21(2003) 2749
[44] Lon A. Porter, Jr. , Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribe, Lindsay C. C. Elliott, and Jilian M. Buriak, Nano, (2002)
[45] Ikurou Umezu, Takashi Yoshida, Kimihisa Matsumoto, and Akira Sugimura, Mitsuru Inada, Appl. Phys. Lett., 81 (2002) 1492
[46] M. Lazzarino, S. Heun, B. Ressel and K. C. Prince, P. Pingue, and C. Ascoli, Appl. Phys. Lett., 81 (2002) 2842
[47] J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir,10 (1994) 4367
[48] R. Stephen, Wasserman, Yu-Tai Tao, M. George, Whitesides, Langmuir, 5 (1989) 1074
[49] R. Stephen, Wasserman, M. George, Whitesides, Ian M. Tidswel, Ben M. Ocko, Peter S. Pershan, John D. Axel, Langmuir, 111 (1989) 5852
[50] P. Silberzan, JL . LBger, D. AusserrB, J. J. Benattarll, Langmuir, 7 (1991) 1647
[51] Sergio Brandriss, Shlomo Margel, Langmuir, 9 (1991) 1232
[52] Abraham Ulman, Chem. Rev.,96 (1996) 1553
[54] Reena Banga, Jack Yarwood, Langmuir, 11 (1995) 4393
[55] Uthara Srinivasan, Michael R. Houston, T. Roger, Howe, Fellow, Roya Maboudian, IEEE, 7 (1998) 1057
[56] Mark J. Stevens, Langmuir, 15 (1999) 2773
[57] Bong Hwan Kim, Taek Dong Chung, Chang Hoon Oh, Kukjin Chun, IEEE, 10 (2001) 33
[58] In-Ha Sung, Ji-Chul Yang, Dae-Eun Kim, Bo-Sung Shin, Wear, 255 (2003) 808
[59] Toshi Kasai, Bharat Bhushan, Gerit Kulik, Laura Barbieri, Patrik Hoffmann, J. Vac. Sci. Technol.B, 23 (2005) 995
[60] O.P. Khatri, D. Devaprakasam, S.K. Biswas, Tribology Letters, 20 (2005) 235
[61] W. Hild, S.I.-U. Ahmed, G. Hungenbach, M. Scherge, J.A. Schaefer, Tibotest, 12 (2006) 161
[62] Y. X. Zhuang, O.Hansen, T.Knieling, C.Wang, P.Rombach, W.Lang, W.Benecke, M.Kehlenbeck, J.Koblitz, Journal of Micromechanics and Microengineering,16 (2006) 2259
[63] Joëlle Fréchette, Roya Maboudian, Carlo Carraro, Journal of Microelectromechanical Systems,15 (2006) 737
[64] Mark E. McGovern, M. R. Krishna, Kallury, M. Thompson, Langmuir, 10 (1994) 3607
[65] B. C. Bunker, R. W. Carpick, R. A. Assink, M. L. Thomas, M. G. Hankins, J. A. Voigt, D. Sipola, M. P. de Boer, G. L. Gulley, Langmuir, 16 (2000) 7742
[66] David L. Angst, Gary W. Simmons, Langmuir, 7 (1991) 2236
[67] J. D. Le Grange, J. L. Markham, C. R. Kurkjian, Langmuir, 9 (1993) 1749
[68] Michael R. Houston, Roger T. Howe, Roya Maboudian, J. Appl. Phys. 81 (1997) 3475
[69] Gun-Young Jung, Zhiyong Li, Wei Wu, Yong Chen, Deirdre L. Olynick, Shih-Yuan Wang, William M. Tong, and R. Stanley Williams, Langmuir, 21 (2005) 1158
[70] Joon-Seo Park, Andy Nguyen Vo, David Barriet, Young-Seok Shon,
T. Randall Lee, Langmuir, 21 (2005) 2902
[71] S. Kim, K. Cho, J. E. Curry, Langmuir, 21 (2005) 8290
[72] D. K. fer, G. Witte, P. Cyganik, A. Terfort, C. Woll, J. Am. Chem. Soc. 128 (2006) 1723
[73] Hirofumi Kubota, Journal of Luminescence, 87-89 (2000) 56
[74]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, IEEE J. Sel. Top. Quant., 10 (2002) 107
[75] 洪昭南,電漿反應器,化工技術,第三卷,第三期,124-135,1995
[76] H. Yasuda, Plasma Polymerization, 1985.
[77] J. R. Roth, Industrial Plasma Engineering-Volume, Institute of Physics Publishing, London, 1995.
[78] S. J. Lee, B. G. Paik, G. B. Kim, Y. G. Jang, Jap. J. Appl. Physi. 45 (2006) 912
[79] http://www.face-kyowa.com/en/learning/learning1.html
[80] 鄭總輝、陳振鑾、陳致源、鄭欽峰,工業材料雜誌,218期,80-88頁,2005年2 月
[81] 王武敬、金帷國、楊瑋鈞,化工資訊與商情,NO.27 2005年9月
[82] H. Murase, T. Fujibayashi, Progress in Organic Coating, 31 (1997) 97
[83] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir, 16 (2000) 5754
[84] T. Kasai, B. Bhushan, G. Kulik, . Barbieri, P. Hoffmann, J. Vac. Sci. Technaol. B, 23 (2005) 995
[85] W. Hu, B. Yang, C. Peng, S. W. Pang, J. Vac. Sci. Technaol. B, 24 (2006) 2225
[86] A. Y. Fadeev, T. J. McCarthy, Langmuir, 16 (2003) 7268
[87] W. Robert Ashurst, C. Carraro, Roya Maboudian, IEEE, 3 (2003) 173
[88] A. Y. Fadeev, T. J. McCarthy, Langmuir, 16 (2000) 7268
[89] J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir, 10 (1994) 4367
[90] Johnson, R. E., Jr. Dettre, R. H. Adv. Chem. Ser. 43 (1963) 112.
[91]L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technaol. B, 20 (2002) 2881
[92]N. Kehagias, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahren, G. Gruetzner, J. Vac. Sci. Technaol. B, 23 (2005) 2954
[93]M. Nakajima, T. Yoshikawa, K. Sogo, Y. Hirai, Microelectronic Engineering, 83 (2006) 876
[94]C. Peng, S. W. Pang, J. Vac. Sci. Technaol. B, 24 (2006) 2968
[95] B. Yang, S. W. Pang, J. Vac. Sci. Technaol. B, 24 (2006) 2085
[96] Y. Xu, W.Zhao, Hong Y. Low, Microelectronic Engineering, 83 (2006) 542