簡易檢索 / 詳目顯示

研究生: 陳忠義
Chen, Chung-Yi
論文名稱: 相近模態在時域之模態參數識別
Identification of Modal Parameters of Closely Spaced Modes in Time Domain
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 60
中文關鍵詞: 特徵系統實現法模態干涉模態參數識別
外文關鍵詞: Identification of Modal Parameters, Modal Interference, Eigensystem Realization Algorithm
相關次數: 點閱:146下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由前人研究得知,在頻率域探討當系統具有重根模態時,需利用多輸入多輸出的方法才能有效識別出模態參數。本文探討將頻率域理論推廣至時間域,對具有重根模態系統進行模態參數識別。本文應用特徵系統實現法,並考慮量測雜訊之問題,經由數值模擬顯示,在阻尼比的識別不盡理想,因此利用結合相關函數法來降低雜訊對識別結果的影響。吾人進一步利用相關矩陣直接進行模態參數識別,省略再次建構韓克矩陣的過程,相較特徵系統實現法與資料相關特徵系統實現法更具效率。

    Previous studies show that when a system have an repeated modes in frequency domain, the method of using multiple-input and multiple-output method can effectively identify the modal parameters. In this research, the frequency-domain theory is extended to the time domain for identification of modal parameters for systems that have repeated eignvalues.With the application of eigensystem realization algorithm method and consideration of the measurement noise, numerical simulations show that the identification result in the damping ratio is usually poor. Therefore, with the combination of concept of the correlation function in modal parameter identification, the influence of noise on identification result is reduced. The correlation matrix is also used directly to identify modal parameters, omiting the process of constructing the generalized Hankel matrix, which provides a more efficient method of identififcation of modal parameter.

    中文摘要……………………………………………………………Ⅰ 英文摘要……………………………………………………………Ⅱ 誌謝…………………………………………………………………VII 目錄…………………………………………………………………VIII 表目錄………………………………………………………………X 圖目錄………………………………………………………………XII 第一章 緒論…………………………………………………………… 1 1-1 引言…………………………………………………………… 1 1-2 模態分析與系統識別………………………………………… 2 1-3 文獻回顧……………………………………………………… 5 1-4 研究動機與目的……………………………………………… 7 1-5 論文架構……………………………………………………… 8 第二章 模態分析之頻率響應函數…………………………………… 9 2-1 引言…………………………………………………………… 9 2-2 複模態理論的頻率響應函數…………………………………10 2-3 具有重根模態系統的模態參數識別…………………………16 第三章 時域法模態參數識別理論……………………………………20 3-1 引言……………………………………………………………20 3-2 奇異值分解……………………………………………………21 3-3 特徵系統實現法………………………………………………22 3-4 相關函數之應用………………………………………………28 3-5 相關矩陣法……………………………………………………31 第四章 數值模擬………………………………………………………33 4-1 引言……………………………………………………………33 4-2 具有相近模態的系統之模擬…………………………………33 4-3 具有重根模態的系統之模擬…………………………………39 第五章 結論……………………………………………………………45 參考文獻.………………………………………………………………47

    Avitabile, P., Haselton, D. and Moore, J.,” Modal Test Reference Selection Using an SVD Procedure”, Proceedings of 14th International Modal Analysis Conference,1996
    Brigham, E.O., “The Fast Fourier Transform”, Prentice-Hall ,1974.
    Ewins, D. J., “Modal Testing:Theory and Practice”,Research Studies Press, 1984
    Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”,Journal of Gudance and Control Dynamics,AIAA,Vol.8,No. 5,1985, pp.620-627.
    Juang, J. N. and Pappa, R. S., “Effects of Noise on Modal Parameter Identification by the Eigensystem Realization Algorithm”, Journal of Gudance and Control Dynamics,AIAA, Vol. 9, No. 3,1986,pp.294-303
    Juang, J. N.,Cooper, J. E. and Wright, J. R.,“An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4,No. 1, 1988, pp.5-14
    Fladung, W. A.,” The Development and Implementation of Multiple Reference Impact Testing”, Masters Thesis ,University of Cincinnati, 1994.
    Heylen, W., Lammens, S. and Sas, P.,”Modal Analysis Theory and Testing”, Katholieke Universiteit Leuven,1997
    Hougen, J. O. and Walsh, R. A., “Pulse Testing Method”, Chemical Engineering Progress ,Vol.57 ,No.3, 1961, Pages 69-79.
    Kirshenboim, J., “Real vs. Complex Mode Shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, Pages 1594-1599
    Lin, R. M. and Lin, M. K., “Modal Analysis of Close Modes using Perturbative Sensitivity Approach”, Engineering Structures, Vol.19 ,No.6, 1997, pages 397-406
    Phillips, A. W.and Allemang, R. J.,” The Enhanced Frequency Response Function (eFRF):Scaling and Other Issues”, Proceedings of International Conference on Noise and Vibration Engineering, 1998.
    Rayleigh, L,“The Theory of Sound”, Vols.1, 2, 2nd ed. Dover Publications, 1897 (re-issue 1945).
    Shye, K., VanKarsen, C. and Richardson, M., ”Modal Testing using Multiple References”, Structural Measurement Systems, April 6, 1987
    Shih, C. Y., Tsuei, Y. G., Allemang, R. J., and Brown, D. L., “A Frequency Domain Global Parameter Estimation Method for Multiple Reference Frequency Response Measurements” Proceedings of the 6th IMAC, 1988.Pages 349-365.
    Vold, H. and Rocklin, G. T., “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, Proceedings of 1st International Modal Analysis Conference, 1982, Pages 542 -548.
    Wei, M. L., Allemang, R. J. and Brown, D. L., “Real-Normalization of measured complex modes”, Proceedings of 5th International Modal Analysis Conference, London, England 1987, Pages 708-712
    蘇芳禾,“特徵系統實現法於定常環境振動之模態參數識別研究”,碩士論文,國立成功大學航空太空工程研究所,2006
    張乃家,“應用狀態觀測器於模態參數識別之研究”,碩士論文,國立成功大學航空太空工程研究所,2009
    郭力文,“具有高度模態干涉結構系統之模態參數識別”,碩士論文,國立成功大學航空太空工程研究所,2014

    下載圖示 校內:2020-07-17公開
    校外:2020-07-17公開
    QR CODE