研究生: |
鐘雅柔 Zhong, Ya-Rou |
---|---|
論文名稱: |
穩態熱傳導與熱對流共軛之反算問題於封裝晶片未知體積熱源之預測 A Steady-state Inverse Heat Conduction-Convection Conjugated Problem in Estimating the Unknown Volumetric Heat Sources of Encapsulated Chips |
指導教授: |
黃正弘
Huang, Cheng-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 共軛梯度法 、反算法 |
外文關鍵詞: | Conjugate Gradient Method, Inverse Heat Conduction Convection Conjugated Problem |
相關次數: | 點閱:68 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主旨為使用共軛梯度法(Conjugate Gradient Method)搭配套裝軟體 CFD-ACE+,探討穩態熱傳導與熱對流共軛之反算問題於封裝晶片未知體積熱源之研究(IHCCCP)。
許多工程問題使用傳統正算方法來求解其物理量,也就是探討將已知條件輸入系統模式來分析其輸出為何,這就是正算問題(Direct Problem)。然而在許多實際工程問題中,存在很多物理量因為客觀條件限制或量測技術不足而無法直接計算或量測其值。因此,為了取得所需之物理量,必須利用反算法藉由其它已知的參數或物理量反求之,這就是所謂的逆向或反算問題(Inverse Problem)。由於電子元件的散熱問題在現今科技產業,具有相當高的重要性,目前的趨勢走向高科技、微電子產業,故在晶片的發熱量增加且體積縮小的情形下,元件的壽命與其溫度分佈情形有極大之關連,對於電子產品而言,過高的溫度會損害到晶片的壽命,甚至造成整個系統的不穩定。
本論文第二章及第三章,均為討論穩態熱傳導與熱對流共軛之反算問題於封裝晶片未知體積熱源之研究,在第二章將反算法之共軛梯度法運用在預測晶片內部之熱傳及對流問題上,加入不同量測誤差並且使用不同風速進行預測,其結果顯示即使加入量測誤差並且提高風速預測結果仍然相當準確。第三章為了更貼近實際應用則是預測印刷電路板 (PCB)上多個發熱源強度預測之熱傳及熱對流反算問題,並且加入不同量測誤差並且使用不同風速進行預測,對於增加的入口速度和測量誤差,通過 CGM 所預測的多個晶片的預測熱源仍然相當準確。第二章與第三章皆使用商業軟體CFD-ACE+來建立複雜物理模型的幾何形狀與網格,以數值分析的方式利用CFD-ACE+所解得上表面溫度分佈情形作為反算的依據,即可預測出內部未知熱源強度。
A three-dimensional steady-state inverse heat conduction-convection conjugated problem (IHCCCP) is investigated in this work. The goal is to estimate the unknown spatially dependent volumetric heat generation of an encapsulated chip mounted on a printed circuit board. The functional form of the volumetric heat generation is considered to be unknown prior to the estimation. Therefore, it is known as the category of function estimation in inverse problems. Optimization is performed using the conjugate gradient method (CGM) because this method does not require a priori information regarding the functional form of the unknown functions. Using this method, a large number of unknowns can be corrected and estimated in each iteration, and good estimations can always be obtained. This efficient algorithm has never been applied to the IHCCCP. The results of the inverse estimations are verified using numerical simulations with various inlet air velocities and measurement errors. They reveal that using exact measurements always produces accurate volumetric heat generation and that the regular air velocity does not affect the estimates. The measurement errors and their influence on the estimated heat generation are analyzed. Finally, it is concluded that because the inverse problem is ill-posed, the estimated heat generation becomes less accurate as the measurement error increases.
1.C. P. Wong and M. M. Wong, “Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics,” IEEE Trans. Components Pack. Technol. Vol 22, pp.21–25, 1999.
2.M. Janicki, M. Zubert and A. Napieralski, “Application of Inverse Heat Conduction Methods in Temperature Monitoring of Integrated Circuits,” Sens. Actuators, A Phys, Vol 71, pp. 51–57. 1998.
3.C. H. Huang and S. C. Cheng, “Three-Dimensional Inverse Estimation of Heat Generation in Board Mounted Chips,” J. Thermophys. Heat Transfer, Vol 15, pp. 439–446, 2001.
4.L. Yang, Y. Wang, H. Liu, G. Yan and W. Kou, “Infrared Identification of Internal Overheating Components Inside an Electric Control Cabinet by Inverse Heat Transfer Problem,” SPIE Paper No. 930002, 2014.
5.C. D. Gonzalez, A. Marconnet and G. Paniagua, “Inverse Conduction Heat Transfer and Kriging Interpolation Applied to Temperature Sensor Location in Microchips,” ASME J. Electron. Packag.,Vol 140, pp. 010905. 2018.
6.C. H. Huang and C. T. Lee, “An Inverse Problem to Estimate Simultaneously Six Internal Heat Fluxes for A Square Combustion Chamber,” International Journal of Thermal Sciences, Vol 88, pp. 59–76, 2015.
7.C. H. Huang and Y. L. Chung, “An Inverse Problem in Determining the Optimum Shapes for Partially Wet Annular Fins Based on Efficiency Maximization,” Int. J. Heat Mass Transf. Vol 90, pp. 364–375, 2015.
8.M. Sadybekov, G. Oralsyn and M. Ismailov, “An inverse problem of finding the time-dependent heat transfer coefficient from an integral condition,” International Journal of Pure and Applied Mathematics, Vol 113, pp. 139–149, 2017.
9.D. Lesnic, S. A. Yousef and M. Ivanchov, “Determination of a time-dependent diffusivity from nonlocal conditions, Applied Mathematics and Computation,” Vol 41, pp. 301–320, 2013.
10.A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations,” Computational Mathematics and Mathematical Physics, Vol 54, pp. 797– 810, 2014 .
11.M. Kirane and M. N. H. Tuan, “Identification and regularization for unknown source for a time-fractional diffusion equation,” Computers Mathematics with Applications, Vol 73, pp. 931– 950, 2017.
12.C. H. Huang and M. N. Ozisik, “Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through A Parallel Plate Duct,” Numerical Heat Transfer, Part A, Vol 21, pp. 55-70, 1992.
13.J. R. VanderVeer and Y. Jaluria, “Solution of an inverse convection problem by a predictor–corrector approach,” International Journal of Heat and Mass Transfer, Vol 65, pp. 123-130, 2013.
14.A. Tabrizi. Bangian and Y. Jaluria, “An optimization strategy for the inverse solution of a convection heat transfer problem,” International Journal of Heat and Mass Transfer, Vol 124, pp. 1147-1155, 2018.
15.F. Liu and M. N. Ozisik, “Inverse analysis of transient turbulent forced convection inside parallel plate ducts,” International journal of heat and mass transfer, Vol 39, pp. 2615-2618, 1996.
16.P. T. Hsu, C. K. Chen and Y. T. Yang, “A 2-D inverse method for simultaneous estimation of the inlet temperature and wall heat flux in a laminar circular duct flow,” Numerical Heat Transfer, Part A Applications, Vol 34, pp. 731-745, 1998.
17.J. R. VanderVeer and Y. Jaluria, “Optimization of an inverse convection solution strategy,” International Journal of Heat and Mass Transfer, Vol 73, pp. 664-670, 2014.
18.W. Lin, S. W. Armfield and J. C. Patterson, “Unsteady natural convection boundary layer flow of a linearly-stratified fluid with Pr < 1 on an evenly heated semi-infinite vertical plate,” International Journal of Heat and Mass Transfer, Vol 51, pp. 327-343, 2008.
19.CFX-4.4 User's Manual, AEA Technology Plc, Oxfordshire, U.K., 2001.
20.C. H. Huang and S. P. Wang, “A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method,” Int. J. Heat and Mass Transfer, Vol 42, pp.3387-3403, 1999.
21.C. H. Huang and W. C. Chen, “A Three-Dimensional Inverse Forced Convection Problem in Estimating Surface Heat Flux by Conjugate Gradient Method,” Int. J. Heat and Mass Transfer, Vol 43, pp.3171-3181, 2000.
22.C. H. Huang L. C. Jan, R. Li and A. J. Shih, “A Three-Dimensional Inverse Problem in Estimating the Applied Heat Flux of a Titanium Drilling,” Theoretical and Experimental Studies, Int. J. Heat and Mass Transfer, Vol 50, pp.3265-3277, 2007.
23.C. H. Huang and H. C. Lo, “A Three-Dimensional Inverse Problem in Predicting the Heat Fluxes Distribution in the Cutting Tools”, Numerical Heat Transfer, part A-Applications, Vol 48, pp.1009-1034, 2005.
24.G. Trilok, P. S. Vishweshwara and N. Gnanasekaran, "Inverse estimation of heat flux under forced convection conjugate heat transfer in a vertical channel fully filled with metal foam", Thermal Science and Engineering Progress, 2022
25.O. M. Alifanov, “Solution of an Inverse Problem of Heat Conduction by Iteration Methods,” J. of Engineering Physics, Vol 26, pp.471-476, 1974.
26.A. N. Tikhonov and V. Y. Aresenin, “Solution of ill posed problem,” V. H. Wistom&Sons, Washington, DC, 1997.
27.C. H. Huang and W. L. Chang, "An inverse design method for optimizing design parameters of heat sink modules with encapsulated chip,", Applied Thermal Engineering, vol. 40, pp. 216-226, 2012.
28.IMSL Library Edition 10.0. User's Manual: Math Library Version 1.0, IMSL, Houston, TX, 1987.