簡易檢索 / 詳目顯示

研究生: 雷凱智
Lei, Kai-Chih
論文名稱: 以新穎聚合法合成團鏈共聚物之研究
Preparation of Block Copolymers by Novel Polymerization
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 154
中文關鍵詞: 陰離子聚合硫醇己內醯胺活性聚合鏈延長劑聚乳酸Poly(L-lysine)Doxorubicin藥物釋放
外文關鍵詞: anionic polymerization, mercaptan, caprolactam, living polymerization, chain extender, Poly(Lactic Acid), Poly(L-lysine), Doxorubicin, Drug release
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用陰離子聚合法合成末端具有硫醇官能基之聚苯乙烯(Polystyrene, PS)作為巨起始劑PS-SH,與己內醯胺形成雙成份起始劑,成功地起始聚合甲基丙烯酸甲酯(Methyl methacrylate,MMA)單體製備出Poly(styrene)n-block- poly(methyl methacrylate)m團鏈共聚物。此共聚合經由GPC及NMR分析結果顯示其分子量大小為14700-28000(n=67 m=74-200);由AFM圖觀察顯示,此團鏈共聚物薄膜表面呈現均勻奈米分散相之自組裝有序排列,其分散相的尺寸約為25nm左右。若巨起始劑主鏈改為聚丁二烯(Polybutydiene)(PB-SH)時,也可以與己內醯胺雙成份起始聚合苯乙烯(Styrene)單體,製備團鏈共聚物Poly(butadiene)n-block-poly(styrene)m (n=83 m=33-158)。因此,利用陰離子聚合法合成末端具有硫醇官能基之巨起始劑結合己內醯胺,可以成功地進行自由基活性聚合得到團鏈共聚物。
    進一步地,本文利用PS-SH與己內醯胺雙成份起始系統,製備Poly(styrene)n-block-poly(methyl methacrylate)m-block- poly(glycidyl methacrylate)p(n=28 m=31-76 p=28-67)團鏈共聚物作為聚乳酸(Polylactic acid; PLA)材料熔融混煉加工之鏈延長劑。從GPC檢測結果發現,藉由鏈延長劑的導入,可有效的提升聚乳酸分子量從10萬上升至60萬左右,解決聚乳酸在加工中發生的水解問題,並提供了聚乳酸材料再利用性與回收性。另由DSC降溫段分析結果中,發現Pure PLA沒有結晶峰,經摻入鏈延長劑後,可誘導出明顯且狹窄之結晶峰,其結晶溫度高達127℃,有效的增加聚乳酸的結晶性。TGA分析結果顯示熱裂解溫度從313℃提升至332℃左右,有效改善聚乳酸耐熱性。在機械性質方面,經由快速降溫製作之聚乳酸啞鈴型試片具有韌性,其斷裂延伸率可達130%左右。本論文中亦改變加工溫度探討反應速率之影響,成功地將鏈延長劑與聚乳酸的反應時間縮短至兩分鐘,以符合一般塑膠加工廠之製程條件。
    另一方面,本文亦利用陰離子聚合法製備末端具有一級胺官能基之聚苯乙烯,再與α-amino acid N-carboxyanhydrides (NCA)單體進行開環聚合,進而得到Poly(styrene)n-block-poly(Z-L-lysine)m (n=27 m=22-112)團鏈共聚物。由FTIR檢測分析得知,當固定PS鏈段長度,調整不同鏈段長度之Poly(Z-L-lysine),可以發現隨著Poly(Z-L-lysine)鏈長增加,Poly(Z-L-lysine)的分子結構從不穩定的β-sheet轉變為穩定的α-helix二級結構;當m=112時,材料可以完全以穩定的α-helix二級結構排列;並且,由SAXS可以發現當PS-b-Poly(Z-L-lysine)以α-helix二級結構為主時,可以排列成規則的六角圓柱結構。再配合AFM結果發現,此團鏈共聚物可以得到均勻奈米分散等級的排列,平均分散相的尺寸約為80nm左右。透過去保護(Deprotection)得到Poly(styrene)-b-poly(L-lysine),以PS作為疏水端,poly(L-lysine)作為親水端形成一穩定的球狀微胞結構。透過DLS與TEM檢測發現,微胞粒徑皆小於40 nm,並隨著poly(L-lysine)鏈段越長粒徑大小也呈正比的些微成長。將此材料應用於包覆抗癌藥物Doxorubicin(DOX),從UV結果可以發現此材料可穩定的進行藥物釋放,累積釋放量約為總包覆量的32%左右。

    In this research, the thiol-terminal homopolymer was synthesized by anionic polymerization and underwent further living polymerization with initiator pair of thiol and caprolactam to prepare block copolymer. Poly(styrene)n-block-poly(methyl methacrylate)m (n=83 m=33-158) copolymers were synthesized with the novel living polymerization. AFM was employed to observe the morphology of the microphase separation. With replacing the macro initiator by PB-SH, the preparation of block copolymer could also proceed by the new initiator pair, PB-SH and caprolactam. The Poly(butadiene)n-block-poly(styrene)m (n=83 m=33-158) block copolymers were successfully synthesized with this novel approach.
    By molecular design, the block copolymers, poly(styrene)n-block-poly(methyl methacrylate)m-block-poly(glycidyl methacrylate)p (n = 28 m = 31-76 p = 28-67), was synthesized as chain extender. With the addition of chain extension agent, an effective increase in molecular weight of PLA from 85,000 to 600,000 could be observed by GPC result. This solved the problem of hydrolysis as PLA was processed and provided PLA the properties of re-use and recycling. In the DSC analysis, no peaks appeared in the sample of pure PLA; in contrast, a sharp and obvious crystallization peak was induced after the addition of chain extension agent. The crystallization temperature was 127℃ implying that the crystalline of PLA was apparently enhanced. In the TGA result, the increase in thermal decomposition temperature from 313℃ to 332℃ confirmed that the thermal stability was improved. In the characterization of mechanical properties, the PLA sample processed quenching procedure was found with toughness and its elongation at break reached 130%. The effect of different processing temperature to the reaction rate was also discussed. The reaction time between of chain extension agent and PLA was reduced to 2 minutes satisfying the producing condition in commercial process.
    Also, in this research, polystyrene with functional group of terminal primary amine, which was prepared by anionic polymerization, was underwent ring opening polymerization with α-amino acid N-carboxyanhydrides (NCA) monomer and producing Poly(styrene)n-block-poly(Z-L-lysine)m (n=27 m=22-112) block copolymer. The FT-IR result showed that as length of poly(Z-L-lysine) chain increased, the poly(Z-L-lysine) became α-helix secondary structure which was more stable than its original β-sheet structure. This material could entirely arrange in α-helix secondary structure as m=112. It can be observed by SAXS analysis that regular hexagonal crystal structure was formed as most of the PS-b-Poly(Z-L-lysine) was in the structure of α-helix. By the images of AFM, microphase separation of the block copolymer which dispersed uniformly in nano-scale was observed and the average size of the dispersion phase was found around 80 nm. Poly(styrene)-b-poly(L-lysine) was produced by deprotection and formed spherical micelles with hydrophobic tails of PS and hydrophilic heads of poly(L-lysine). By DLS and TEM results, the particle sizes of the micelles were smaller than 40 nm and slightly increased with the length of poly(L-lysine) chain. The Doxorubicin (DOX), kind of anti-cancer drug, was encapsulated by this material in order to discuss the application of poly(styrene)-b-poly(L-lysine) in drug delivery system. A stable delivery of the drug could be confirmed by the UV-vis spectroscopy analysis and the cumulative release was 32%.

    第一章 緒 論 1 第二章 文獻回顧 3 2-1 陰離子聚合 3 2-2 硫醇和己內醯胺雙成分起始劑活性聚合法 9 2-3 團鏈共聚物 12 2-3-1 自組裝之原理 12 2-3-2 高分子的自組裝行為 14 2-4 分子設計 18 2-5 聚乳酸(Poly Lactic Acid)概述 19 2-6 Poly(lysine) 概述 25 2-6-1 聚胜肽之二級結構 27 2-6-2 聚胜肽共聚物的應用 29 2-7 研究動機 35 第三章 實驗部分 37 3-1 實驗藥品 37 3-2 實驗儀器 38 3-3 實驗步驟 39 3-3-1 末端含有硫醇官能基聚苯乙烯之製備 39 3-3-2 團鏈共聚物PS-block-PMMA之製備 40 3-3-3 團鏈共聚物PS-block-PMMA-block-PGMA之製備 40 3-3-4 聚丁二烯末端含有硫醇官能基之製備 40 3-3-5 團鏈共聚物PB-block-PS之製備 41 3-3-6 聚苯乙烯末端含有環氧官能基之製備 41 3-3-7 聚苯乙烯末端含有羧酸官能基之製備 42 3-3-8 苯乙烯末端含有一級胺官能基之製備 42 3-3-9 Z-L-lysine NCA單體之製備 43 3-3-10 團鏈共聚物PS-b-Poly(Z-L-lysine)之製備 43 3-3-11 團鏈共聚物PS-b-Poly(Z-L-lysine)去保護 43 3-4 鑑定分析方法 44 3-4-1 團鏈聚合物之分析 44 3-4-2 團鏈共聚物高分子薄膜之分析 44 第四章 團鏈共聚物PS-block-PMMA之合成與自組裝行為探討 47 4-1 巨起始劑PS-SH之合成與結構鑑定分析 47 4-2 PS-block-PMMA團鏈共聚物之合成與結構鑑定分析 50 4-2-1 PS-block-PMMA團鏈共聚物之合成與結構鑑定分析 50 4-2-2 PS-block-PMMA團鏈共聚物之熱性質分析 55 4-3 PS-block-PMMA團鏈共聚物之自組裝形態分析 58 4-4 團鏈共聚物Poly(butadiene-b-styrene)之合成與鑑定 61 4-4-1 巨起始劑PB-SH之合成與結構鑑定 61 4-4-2 PB-block-PS團鏈共聚物之合成與結構鑑定 64 第五章 團鏈共聚物PS-block-PMMA-block-PGMA之合成 及其應用於混摻PLA之研究 69 5-1 PS-block-PMMA-block-PGMA團鏈共聚物之合成與結構鑑定 69 5-2 PS-block-PMMA-block-PGMA團鏈共聚物與PLA混摻之研究 75 5-2-1 PS-block-PMMA-block-PGMA對PLA分子量的影響 75 5-2-2 PS-block-PMMA-block-PGMA對PLA熱穩定性之影響 77 5-2-3 PS-block-PMMA-block-PGMA對PLA結晶性之影響 78 5-2-4 PS-block-PMMA-block-PGMA抑制PLA冷結晶 80 5-2-5 PS-block-PMMA-block-PGMA對PLA玻璃轉換溫度(Tg)之影響 81 5-2-6 PS-block-PMMA-block-PGMA對PLA熔融型態之影響 82 5-2-7 反應溫度對PSMG/PLA材料之鏈延展反應速率的探討 84 5-2-8 誘導PLA結晶之結晶型為探討 90 5-2-9 PS-b-PMMA-b-PGMA之不同組成比例對PLA性質的影響 98 5-3 1 wt%PSMG/PLA材料之結晶型態 105 5-4 PSMG/PLA 材料之拉伸性質分析 110 第六章 生醫材料之團鏈共聚物PS-b-Poly(L-lysine)之製備與應用 112 6-1 製備末端含有一級胺官能基之聚苯乙烯 112 6-1-1 巨起始劑PS-NH之合成與結構鑑定 112 6-1-2 巨起始劑PS-CONH之合成與結構鑑定分析 120 6-2 Z-L-lysine NCA monomer 之合成與鑑定 127 6-3 團鏈共聚物PS-b-Poly(Z-L-lysine)之合成與鑑定 128 6-4 去保護團鏈共聚物PS-b-Poly(lysine)之探討 138 6-4-1 去保護後團鏈共聚物PS-b-Poly(L-lysine)之合成與微胞結構探討 138 6-4-2 團鏈共聚物PS-b-Poly(L-lysine)包覆抗癌藥物Doxorubicin之研究 143 第七章 總結 146 參考文獻 149 自述 154

    1. H.L. Hsieh, R.P. Quirk, Anionic Polymerization:Principles and Practical Applications :New York,1996
    2. Y.H. Hu, C.Y. Chen, J. Polym. Sci., Part A: Polym. Chem. ,2002,40:3692
    3. Y.H. Hu, C.Y. Chen, C.C. Wang, Y.H. Huang, S.P. Wang, J. Polym. Sci., Part A: Polym. Chem.,2004,42:4972
    4. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2003,80:1
    5. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2003,82:81
    6. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2004,84:505
    7. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2004,84:545
    8. R.P. Quirk,T. Lynch, Macromolecules ,1993,26:1206
    9. R.P. Quirk, B. Lee, Polymer Int ,1992,27:359
    10. S. Penczek, P. Kubisa;R. Szymanski, Macromol Chem Rapid Commun ,1991,12:77
    11. S. Zhu,Y. Tian, A.E. Hamielec, Macromolecules ,1990,23:1144
    12. B. Yamada, M. Kageoka, T. Otsu, Macromolecules ,1991,24:5236
    13. B. Yamada, M. Kageoka, T. Otsu, Macromolecules ,1992,25:4828
    14. G.M. Whitesides, B. Grzbowski, Science ,2002, 295:2418
    15. G.M. Whitesides, J.P. Mathias,C.T. Seto, Science ,1991,254:1312
    16. H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules ,1991,24:240
    17. C. Tsitsilianis, G. Staikos, Macromolecules ,1992,25:910
    18. A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras,K. Almdal, K. Mortensen, Macromolecules ,1995,28:8796
    19. J. Bang, S.H. Kim,E. Drockenmuller,M.J. Misner,T.P. Russell,C.J. Hawker, J. Am. Chem. Soc. 2006,126:7622

    20. Y. Gong, H. Huang, Z. Hu, Y. Chen, D. Chen, Z. Wang, T. He, Macromolecules 2006, 39: 3369
    21. Y. Huang, H. Liu, Y. Hu, Macromol. Theory Simul. , 2006, 15:321
    22. J. Masuda, A. Takano, J. Suzuki, Y. Nagata, A. Noro, K. Hayashida, Y. Matsushita, Macromolecules , 2007, 40:4023
    23. D.A. Rider, K.A. Cavicchi, K.N. Power-Billard, T.P. Russell, I. Manners, Macromolecules , 2005, 38:6931
    24. M.A. van Dijk, R. van den Berg, Macromolecules , 1996, 28:6773
    25. C. Tand, S.M. Hur, B.C. Stahl, K. Sivanandan, M. Dimitriou, E. Pressly, G.H. Frefrickson, E.J. Kramer, C.J. Hawker, Macromolecules , 2010, 43:2880
    26. P.M. Pelouze, J., Ann. Chim. Phys., 1845, 3:257
    27. J.U. Nef, Ann. Chem., 1914, 403:204
    28. W.H. Carothers et al., J. Am. Chem. Soc., 1932, 5:761
    29. C.E. Lowe US 2668162. , 1954
    30. Y.Y. Michel (Ethicon Co). US 3531561. , 1970
    31. A.K. Schneider(Ethicon Co). US3636956. , 1972
    32. D. Wasserman et al(Ethicon Co). US3792010. , 1974
    33. D. Wasserman et al(Ethicon Co). US3839297. , 1974
    34. P. De Santis et al., Biopolymer, 1968, 6:299
    35. H.R. Kricheldorf et al., Macromol. Symp., 1996, 103:85
    36. B. Kalb et al., Polymer, 1980, 21:607
    37. R. Vasanthakumari et al., Polymer , 1983, 24:175
    38. J.W. Leenslag et al., Makromol. Chem., 1987, 1880:1809
    39. Ikada et al., Macromolecules , 1987, 20:904
    40. T. Okihara et al., J. Macromol. Sci.-Phys. , 1991, B30:119
    41. S. Li et al., Degradable Polymers-Principles and Applications. : London, Chapman&Hall, 1995:43
    42. 圖解生物可分解塑膠初版,日本生物可分解塑膠研究會著,蕭志強譯
    43. R.E. Drumright, P.R. Gruber, Adv. Mater. , 2000, 23:1841
    44. J. Lunt, Polym Deg Sta. , 1998, 59:129
    45. D. Garlotta, J. Polym. Environ. , 2002, 9:61
    46. Q. Fang, M.A. Hanna, Indu.s Crops. Pdts. , 1999, 10:47
    47. F.D. Kopinke, K. Mackenzie, J. Anal Apply Pyrolysis , 1997, 40:43
    48. Y.J. Fan, H. Nishida, Y. Shirai, Y. Tokiwa, T. Endo, Polym Degrad Stab , 2004, 86:197
    49. K.H. Yoon, M.B. Polk, J.H. Park, B.G. Min, D.A. Schiraldi, Polym Int , 2005, 54:47
    50. H. Matsumoto et al(Toray Industries).JP 2001261797. , 2001
    51. T. Furukawa (Kanebo Led, Kanebo Synthetic Fibers Led). JP 2006111735. , 2006
    52. N. Sato et al.(Sony Corp). JP 2003327803. , 2003
    53. H. Matsumoto et al.(Toray Industries). JP 2003301327. , 2002
    54. S. Tanaka, Y. Kiuchi, M. Iji, WO 2007091427. , 2007
    55. Y. Egawa, EP 1862507. , 2007
    56. M. Yagi, A. Morikawa, T. Okuda, H. Hayachi, JP 2003221499. , 2003
    57. K. Mochizuki, Y. Maeda, JP 2004332166. , 2004
    58. L. Yang, X. Chen, X. Jing, Polymer Degradation and Stability , 2008, 93:1923
    59. L.S. Wang, S.X. Cheng, R.X. Zhuo, Macromol Rapid Commun , 2004, 25: 959
    60. H.R. Kricheldorf, Angew. Chem. Int. Ed. , 2006, 45:5752
    61. H.R. Kricheldorf, Spring Verlag:New York, 1987.
    62. H.R. Kricheldorf, M. Sell, G.J. Schwarz, Macromol. Sci. Chem. , 2008, 45:425
    63. M. Frankel, E. Katchalski, Palestine Chemist Organization:Jerusalem , 1944, 24
    64. E. Katchalski, I. Grossfeld, M. Frankel, J. Am. Chem. Soc. , 1948, 70:2094.
    65. C. Deng, X. Chen, J.Sun, T.Lu, W. Wang, X. Jing, Wiley InterScience , 2006:3218
    66. R. Subramanian, K. Kazerounian, Journal of Mechanical Design , 2007, 129:1130
    67. H.R. Kricheldorf, D. Muller, J. Stulz, Makromol. Chem., 1983, 184:1407
    68. L.A. Haines, K. Rajagopal, B. Ozbas, D.A. Salick, J. Am. Chem. Soc. , 2005, 127 :17025
    69. M. Schmidt, M.W. Neiser, J. Okuda, Macromolecules , 2003, 36:5437
    70. S. Asayama, A. Maruyama, T. Akaike, Bio. Conjugate Chem. , 1999, 10:246
    71. F. Sanda, G. Gao, T. Masuda, Macromol. Biosci. , 2004, 4:570
    72. Y.L. TU, C.C. WANG, C.Y. CHEN, J. Polym. Sci., Part A: Polym. Chem., 2009, 47:4655
    73. Y. Fan, G. Chen, J. Tanaka, T. Tateishi, Biomacromolecules , 2005, 6:3051
    74. F. Sanda, G. Gao, T. Masuda, Biomacromolecules , 2006, 7:590
    75. H.A. Klok, J.R. Hernandez, Macromolecules , 2002, 35:8718
    76. M. Kar, P.S. Vijayakumar, B.L.V. Prasad, S.S. Gupta, Langmuir , 2010, 26:5772
    77. T. Kashiwagi, A. Inaba, J.E. Brown, E. Masuda, Macromolecules , 1986, 19:2160
    78. S.H. Anastasiadis, T.P. Russell, S.K. Satija, C.F. Majkrzak, J. Chem. Phys. , 1990, 92:5677
    79. Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Macromolecules , 2004, 37:7301
    80. J. Peng, D.H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, J. Chem. Phys. , 2006, 125:64702
    81. J. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Macromolecules , 2008, 41:1352
    82. C. Oriakhi, M.M. Lerner, J. Mater. Chem. , 1996, 6:103
    83. L. Jiang, J. Zhang, M.P. Wolcott, Polymer , 2007, 48:7632
    84. H.W. Xiao, P. Li, X. Ren, T. Jiang, J. Yeh, J. Appl. Polym. Sci. , 2010, 118:3558
    85. Z. Zhou, N. Yin, Y. Zhang, Y. Zhang, J. Appl. Polym. Sci. , 2007, 107:825
    86. R. P. Quirk, Q. Zhuo, Macromolecules , 1997, 30:1531
    87. J.P. Billot, A. Douy, B. Gallot, Makromol. Chem., 1977, 178:1641
    88. S. Lecommandoux, M.F. Achard, J.F. Langenwalter, H.A. Klok, Macromolecules , 2001, 34:9100

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE