研究生: |
雷凱智 Lei, Kai-Chih |
---|---|
論文名稱: |
以新穎聚合法合成團鏈共聚物之研究 Preparation of Block Copolymers by Novel Polymerization |
指導教授: |
陳炳宏
Chen, Bing-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 陰離子聚合 、硫醇 、己內醯胺 、活性聚合 、鏈延長劑 、聚乳酸 、Poly(L-lysine) 、Doxorubicin 、藥物釋放 |
外文關鍵詞: | anionic polymerization, mercaptan, caprolactam, living polymerization, chain extender, Poly(Lactic Acid), Poly(L-lysine), Doxorubicin, Drug release |
相關次數: | 點閱:117 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用陰離子聚合法合成末端具有硫醇官能基之聚苯乙烯(Polystyrene, PS)作為巨起始劑PS-SH,與己內醯胺形成雙成份起始劑,成功地起始聚合甲基丙烯酸甲酯(Methyl methacrylate,MMA)單體製備出Poly(styrene)n-block- poly(methyl methacrylate)m團鏈共聚物。此共聚合經由GPC及NMR分析結果顯示其分子量大小為14700-28000(n=67 m=74-200);由AFM圖觀察顯示,此團鏈共聚物薄膜表面呈現均勻奈米分散相之自組裝有序排列,其分散相的尺寸約為25nm左右。若巨起始劑主鏈改為聚丁二烯(Polybutydiene)(PB-SH)時,也可以與己內醯胺雙成份起始聚合苯乙烯(Styrene)單體,製備團鏈共聚物Poly(butadiene)n-block-poly(styrene)m (n=83 m=33-158)。因此,利用陰離子聚合法合成末端具有硫醇官能基之巨起始劑結合己內醯胺,可以成功地進行自由基活性聚合得到團鏈共聚物。
進一步地,本文利用PS-SH與己內醯胺雙成份起始系統,製備Poly(styrene)n-block-poly(methyl methacrylate)m-block- poly(glycidyl methacrylate)p(n=28 m=31-76 p=28-67)團鏈共聚物作為聚乳酸(Polylactic acid; PLA)材料熔融混煉加工之鏈延長劑。從GPC檢測結果發現,藉由鏈延長劑的導入,可有效的提升聚乳酸分子量從10萬上升至60萬左右,解決聚乳酸在加工中發生的水解問題,並提供了聚乳酸材料再利用性與回收性。另由DSC降溫段分析結果中,發現Pure PLA沒有結晶峰,經摻入鏈延長劑後,可誘導出明顯且狹窄之結晶峰,其結晶溫度高達127℃,有效的增加聚乳酸的結晶性。TGA分析結果顯示熱裂解溫度從313℃提升至332℃左右,有效改善聚乳酸耐熱性。在機械性質方面,經由快速降溫製作之聚乳酸啞鈴型試片具有韌性,其斷裂延伸率可達130%左右。本論文中亦改變加工溫度探討反應速率之影響,成功地將鏈延長劑與聚乳酸的反應時間縮短至兩分鐘,以符合一般塑膠加工廠之製程條件。
另一方面,本文亦利用陰離子聚合法製備末端具有一級胺官能基之聚苯乙烯,再與α-amino acid N-carboxyanhydrides (NCA)單體進行開環聚合,進而得到Poly(styrene)n-block-poly(Z-L-lysine)m (n=27 m=22-112)團鏈共聚物。由FTIR檢測分析得知,當固定PS鏈段長度,調整不同鏈段長度之Poly(Z-L-lysine),可以發現隨著Poly(Z-L-lysine)鏈長增加,Poly(Z-L-lysine)的分子結構從不穩定的β-sheet轉變為穩定的α-helix二級結構;當m=112時,材料可以完全以穩定的α-helix二級結構排列;並且,由SAXS可以發現當PS-b-Poly(Z-L-lysine)以α-helix二級結構為主時,可以排列成規則的六角圓柱結構。再配合AFM結果發現,此團鏈共聚物可以得到均勻奈米分散等級的排列,平均分散相的尺寸約為80nm左右。透過去保護(Deprotection)得到Poly(styrene)-b-poly(L-lysine),以PS作為疏水端,poly(L-lysine)作為親水端形成一穩定的球狀微胞結構。透過DLS與TEM檢測發現,微胞粒徑皆小於40 nm,並隨著poly(L-lysine)鏈段越長粒徑大小也呈正比的些微成長。將此材料應用於包覆抗癌藥物Doxorubicin(DOX),從UV結果可以發現此材料可穩定的進行藥物釋放,累積釋放量約為總包覆量的32%左右。
In this research, the thiol-terminal homopolymer was synthesized by anionic polymerization and underwent further living polymerization with initiator pair of thiol and caprolactam to prepare block copolymer. Poly(styrene)n-block-poly(methyl methacrylate)m (n=83 m=33-158) copolymers were synthesized with the novel living polymerization. AFM was employed to observe the morphology of the microphase separation. With replacing the macro initiator by PB-SH, the preparation of block copolymer could also proceed by the new initiator pair, PB-SH and caprolactam. The Poly(butadiene)n-block-poly(styrene)m (n=83 m=33-158) block copolymers were successfully synthesized with this novel approach.
By molecular design, the block copolymers, poly(styrene)n-block-poly(methyl methacrylate)m-block-poly(glycidyl methacrylate)p (n = 28 m = 31-76 p = 28-67), was synthesized as chain extender. With the addition of chain extension agent, an effective increase in molecular weight of PLA from 85,000 to 600,000 could be observed by GPC result. This solved the problem of hydrolysis as PLA was processed and provided PLA the properties of re-use and recycling. In the DSC analysis, no peaks appeared in the sample of pure PLA; in contrast, a sharp and obvious crystallization peak was induced after the addition of chain extension agent. The crystallization temperature was 127℃ implying that the crystalline of PLA was apparently enhanced. In the TGA result, the increase in thermal decomposition temperature from 313℃ to 332℃ confirmed that the thermal stability was improved. In the characterization of mechanical properties, the PLA sample processed quenching procedure was found with toughness and its elongation at break reached 130%. The effect of different processing temperature to the reaction rate was also discussed. The reaction time between of chain extension agent and PLA was reduced to 2 minutes satisfying the producing condition in commercial process.
Also, in this research, polystyrene with functional group of terminal primary amine, which was prepared by anionic polymerization, was underwent ring opening polymerization with α-amino acid N-carboxyanhydrides (NCA) monomer and producing Poly(styrene)n-block-poly(Z-L-lysine)m (n=27 m=22-112) block copolymer. The FT-IR result showed that as length of poly(Z-L-lysine) chain increased, the poly(Z-L-lysine) became α-helix secondary structure which was more stable than its original β-sheet structure. This material could entirely arrange in α-helix secondary structure as m=112. It can be observed by SAXS analysis that regular hexagonal crystal structure was formed as most of the PS-b-Poly(Z-L-lysine) was in the structure of α-helix. By the images of AFM, microphase separation of the block copolymer which dispersed uniformly in nano-scale was observed and the average size of the dispersion phase was found around 80 nm. Poly(styrene)-b-poly(L-lysine) was produced by deprotection and formed spherical micelles with hydrophobic tails of PS and hydrophilic heads of poly(L-lysine). By DLS and TEM results, the particle sizes of the micelles were smaller than 40 nm and slightly increased with the length of poly(L-lysine) chain. The Doxorubicin (DOX), kind of anti-cancer drug, was encapsulated by this material in order to discuss the application of poly(styrene)-b-poly(L-lysine) in drug delivery system. A stable delivery of the drug could be confirmed by the UV-vis spectroscopy analysis and the cumulative release was 32%.
1. H.L. Hsieh, R.P. Quirk, Anionic Polymerization:Principles and Practical Applications :New York,1996
2. Y.H. Hu, C.Y. Chen, J. Polym. Sci., Part A: Polym. Chem. ,2002,40:3692
3. Y.H. Hu, C.Y. Chen, C.C. Wang, Y.H. Huang, S.P. Wang, J. Polym. Sci., Part A: Polym. Chem.,2004,42:4972
4. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2003,80:1
5. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2003,82:81
6. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2004,84:505
7. Y.H. Hu, C.Y. Chen, Polym. Degrad. Stab. ,2004,84:545
8. R.P. Quirk,T. Lynch, Macromolecules ,1993,26:1206
9. R.P. Quirk, B. Lee, Polymer Int ,1992,27:359
10. S. Penczek, P. Kubisa;R. Szymanski, Macromol Chem Rapid Commun ,1991,12:77
11. S. Zhu,Y. Tian, A.E. Hamielec, Macromolecules ,1990,23:1144
12. B. Yamada, M. Kageoka, T. Otsu, Macromolecules ,1991,24:5236
13. B. Yamada, M. Kageoka, T. Otsu, Macromolecules ,1992,25:4828
14. G.M. Whitesides, B. Grzbowski, Science ,2002, 295:2418
15. G.M. Whitesides, J.P. Mathias,C.T. Seto, Science ,1991,254:1312
16. H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules ,1991,24:240
17. C. Tsitsilianis, G. Staikos, Macromolecules ,1992,25:910
18. A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras,K. Almdal, K. Mortensen, Macromolecules ,1995,28:8796
19. J. Bang, S.H. Kim,E. Drockenmuller,M.J. Misner,T.P. Russell,C.J. Hawker, J. Am. Chem. Soc. 2006,126:7622
20. Y. Gong, H. Huang, Z. Hu, Y. Chen, D. Chen, Z. Wang, T. He, Macromolecules 2006, 39: 3369
21. Y. Huang, H. Liu, Y. Hu, Macromol. Theory Simul. , 2006, 15:321
22. J. Masuda, A. Takano, J. Suzuki, Y. Nagata, A. Noro, K. Hayashida, Y. Matsushita, Macromolecules , 2007, 40:4023
23. D.A. Rider, K.A. Cavicchi, K.N. Power-Billard, T.P. Russell, I. Manners, Macromolecules , 2005, 38:6931
24. M.A. van Dijk, R. van den Berg, Macromolecules , 1996, 28:6773
25. C. Tand, S.M. Hur, B.C. Stahl, K. Sivanandan, M. Dimitriou, E. Pressly, G.H. Frefrickson, E.J. Kramer, C.J. Hawker, Macromolecules , 2010, 43:2880
26. P.M. Pelouze, J., Ann. Chim. Phys., 1845, 3:257
27. J.U. Nef, Ann. Chem., 1914, 403:204
28. W.H. Carothers et al., J. Am. Chem. Soc., 1932, 5:761
29. C.E. Lowe US 2668162. , 1954
30. Y.Y. Michel (Ethicon Co). US 3531561. , 1970
31. A.K. Schneider(Ethicon Co). US3636956. , 1972
32. D. Wasserman et al(Ethicon Co). US3792010. , 1974
33. D. Wasserman et al(Ethicon Co). US3839297. , 1974
34. P. De Santis et al., Biopolymer, 1968, 6:299
35. H.R. Kricheldorf et al., Macromol. Symp., 1996, 103:85
36. B. Kalb et al., Polymer, 1980, 21:607
37. R. Vasanthakumari et al., Polymer , 1983, 24:175
38. J.W. Leenslag et al., Makromol. Chem., 1987, 1880:1809
39. Ikada et al., Macromolecules , 1987, 20:904
40. T. Okihara et al., J. Macromol. Sci.-Phys. , 1991, B30:119
41. S. Li et al., Degradable Polymers-Principles and Applications. : London, Chapman&Hall, 1995:43
42. 圖解生物可分解塑膠初版,日本生物可分解塑膠研究會著,蕭志強譯
43. R.E. Drumright, P.R. Gruber, Adv. Mater. , 2000, 23:1841
44. J. Lunt, Polym Deg Sta. , 1998, 59:129
45. D. Garlotta, J. Polym. Environ. , 2002, 9:61
46. Q. Fang, M.A. Hanna, Indu.s Crops. Pdts. , 1999, 10:47
47. F.D. Kopinke, K. Mackenzie, J. Anal Apply Pyrolysis , 1997, 40:43
48. Y.J. Fan, H. Nishida, Y. Shirai, Y. Tokiwa, T. Endo, Polym Degrad Stab , 2004, 86:197
49. K.H. Yoon, M.B. Polk, J.H. Park, B.G. Min, D.A. Schiraldi, Polym Int , 2005, 54:47
50. H. Matsumoto et al(Toray Industries).JP 2001261797. , 2001
51. T. Furukawa (Kanebo Led, Kanebo Synthetic Fibers Led). JP 2006111735. , 2006
52. N. Sato et al.(Sony Corp). JP 2003327803. , 2003
53. H. Matsumoto et al.(Toray Industries). JP 2003301327. , 2002
54. S. Tanaka, Y. Kiuchi, M. Iji, WO 2007091427. , 2007
55. Y. Egawa, EP 1862507. , 2007
56. M. Yagi, A. Morikawa, T. Okuda, H. Hayachi, JP 2003221499. , 2003
57. K. Mochizuki, Y. Maeda, JP 2004332166. , 2004
58. L. Yang, X. Chen, X. Jing, Polymer Degradation and Stability , 2008, 93:1923
59. L.S. Wang, S.X. Cheng, R.X. Zhuo, Macromol Rapid Commun , 2004, 25: 959
60. H.R. Kricheldorf, Angew. Chem. Int. Ed. , 2006, 45:5752
61. H.R. Kricheldorf, Spring Verlag:New York, 1987.
62. H.R. Kricheldorf, M. Sell, G.J. Schwarz, Macromol. Sci. Chem. , 2008, 45:425
63. M. Frankel, E. Katchalski, Palestine Chemist Organization:Jerusalem , 1944, 24
64. E. Katchalski, I. Grossfeld, M. Frankel, J. Am. Chem. Soc. , 1948, 70:2094.
65. C. Deng, X. Chen, J.Sun, T.Lu, W. Wang, X. Jing, Wiley InterScience , 2006:3218
66. R. Subramanian, K. Kazerounian, Journal of Mechanical Design , 2007, 129:1130
67. H.R. Kricheldorf, D. Muller, J. Stulz, Makromol. Chem., 1983, 184:1407
68. L.A. Haines, K. Rajagopal, B. Ozbas, D.A. Salick, J. Am. Chem. Soc. , 2005, 127 :17025
69. M. Schmidt, M.W. Neiser, J. Okuda, Macromolecules , 2003, 36:5437
70. S. Asayama, A. Maruyama, T. Akaike, Bio. Conjugate Chem. , 1999, 10:246
71. F. Sanda, G. Gao, T. Masuda, Macromol. Biosci. , 2004, 4:570
72. Y.L. TU, C.C. WANG, C.Y. CHEN, J. Polym. Sci., Part A: Polym. Chem., 2009, 47:4655
73. Y. Fan, G. Chen, J. Tanaka, T. Tateishi, Biomacromolecules , 2005, 6:3051
74. F. Sanda, G. Gao, T. Masuda, Biomacromolecules , 2006, 7:590
75. H.A. Klok, J.R. Hernandez, Macromolecules , 2002, 35:8718
76. M. Kar, P.S. Vijayakumar, B.L.V. Prasad, S.S. Gupta, Langmuir , 2010, 26:5772
77. T. Kashiwagi, A. Inaba, J.E. Brown, E. Masuda, Macromolecules , 1986, 19:2160
78. S.H. Anastasiadis, T.P. Russell, S.K. Satija, C.F. Majkrzak, J. Chem. Phys. , 1990, 92:5677
79. Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Macromolecules , 2004, 37:7301
80. J. Peng, D.H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, J. Chem. Phys. , 2006, 125:64702
81. J. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Macromolecules , 2008, 41:1352
82. C. Oriakhi, M.M. Lerner, J. Mater. Chem. , 1996, 6:103
83. L. Jiang, J. Zhang, M.P. Wolcott, Polymer , 2007, 48:7632
84. H.W. Xiao, P. Li, X. Ren, T. Jiang, J. Yeh, J. Appl. Polym. Sci. , 2010, 118:3558
85. Z. Zhou, N. Yin, Y. Zhang, Y. Zhang, J. Appl. Polym. Sci. , 2007, 107:825
86. R. P. Quirk, Q. Zhuo, Macromolecules , 1997, 30:1531
87. J.P. Billot, A. Douy, B. Gallot, Makromol. Chem., 1977, 178:1641
88. S. Lecommandoux, M.F. Achard, J.F. Langenwalter, H.A. Klok, Macromolecules , 2001, 34:9100