簡易檢索 / 詳目顯示

研究生: 黃景暉
Hwung, Ching-Hui
論文名稱: 應用質點軌跡追蹤法於船殼降噪氣泡量測
Application of PTV on the Masker System Bubble Measurement
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 140
中文關鍵詞: 氣泡幕拖航水槽流場觀測
外文關鍵詞: bubble swarm, towing tank, bubble measurement
相關次數: 點閱:62下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以氣泡幕降低噪音是近年來一個有效的反潛手段,雖然已有許多論文討論了氣泡幕聲學效應,但對氣泡幕流場觀測的公開論文卻很少,大多數的論文皆是由聲學來找出氣泡幕的氣泡粒徑,因此在本文中將直接對於氣泡幕的流場進行觀測,利用水下攝影技術觀察氣泡於水下的運動情形。
    本研究由船體的基本資料,由相似船型,自幾何外形與性能來擬合所需要的船形,利用船舶性能計算軟體來估算出設計出來的船殼基本資料,再利用模擬軟體來計算出船殼造成的艉流,也就是螺槳平面的入流,接著利用算出來的船體資料與螺槳平面入流,以螺槳設計軟體來設計螺槳,並進行空蝕評估,最後製造出螺槳實體,並進行單螺槳試驗以驗證設計。接著設置氣泡幕的施放系統,進行氣泡幕的流場觀測實驗。實驗結果發現,氣泡在船速越快時,粒徑會越來越小,這是因為在船高速航行時,氣泡管外壓力會變小,造成氣泡破裂的時間提早,會更快從氣泡管脫離。

    Bubbles have been proven to be a successful noise-reducing technique for ships. Although numerous researches discuss the masker’s acoustics, the flow field measurement is scant of open literatures, and most of the dissertation use the acoustic method to find out the bubble diameters of masker. In this research, we observe the flow field, and use the underwater photo technique to observe the motion of underwater bubbles.
    A ship model is used in this research: fitting to real ship from geometry and performance, using Rhino to fit ship’s geometry, and use orca3D to fit ship’s performance. And then, we simulate the wake by ShipFlow. We design propeller, using simulated wake data and ship’s data by Openprep.
    We observed bubble motion by particle tracking velocimetry (PTV) , and observed bubble shapes by camera. In the experiment, we found that when the ship speeds up, the bubble diameter will become smaller.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVII 符號說明 XIX 第一章 緒論 1 1.1. 研究動機 1 1.2. 文獻回顧 4 1.3. 研究目的 8 第二章 船模與螺槳之設計製造 9 2.1. 設計流程 9 2.2. 船殼設計 10 2.2.1. 船殼建立 11 2.2.2. 阻力預估 13 2.2.3. CFD阻力預估 16 2.2.4. 設計結果 19 2.3. 螺槳設計 20 2.3.1. 升力線理論 21 2.3.2. 設計結果 25 2.3.3. 空蝕 27 2.3.4. 單螺槳試驗 31 2.4. 馬達性能估算 33 2.5. 氣泡帶裝設 34 第三章 研究方法 38 3.1. 實驗儀器與設備 38 3.1.1. 拖航水槽 38 3.1.2. 氣泡幕施放設備 38 3.1.3. 拍攝光源及影像記錄設備 39 3.1.4. 轉速計 42 3.1.5. 質點軌跡測速儀 43 3.2. 氣泡形狀拍攝與PTV用光技巧 44 3.3. 實驗流程 50 3.3.1. 實驗參數 53 3.4. 不確定性分析 55 第四章 實驗結果與討論 61 4.1. 實驗結果 61 4.1.1. 氣泡粒徑分布 61 4.1.2. 氣泡粒徑與深度 61 4.1.3. 氣泡粒徑與船速 67 4.1.4. 氣泡粒徑分布 69 4.1.5. 氣泡粒徑與Nc數 110 4.1.6. 氣泡粒徑分布統計 111 4.1.7. 氣泡移動速度分析 115 4.2. 討論 122 4.2.1氣泡粒徑 122 4.2.2氣泡速度 123 4.3. 問題探討 124 4.3.1. PTV問題 124 4.3.2. 氣泡形狀拍攝問題 125 4.3.3. 氣泡幕設計問題 126 4.3.4. 光源顏色問題 127 第五章結論與未來展望 129 5.1. 結論 129 5.2. 未來展望 130 參考文獻 132 附錄 氣泡實際拍攝照片 135

    [1] Atsushi, S.; Jiro, F.; Katsuya, H., (2005) Measurements of Bubble Jets by
    3D PTV and UVP, Dept. Mech. Engng., Doshisha Univ, Kyoto, Japan.

    [2] Borowski, B.; Sutin, A.; Roh, H. S.; Bunin, B., (2008) Passive acoustic
    threat detection in estuarine environments. Proc. SPIE 6945, 694513.

    [3] Barrau, E.; Rivière, N.; Poupot, Ch.; Cartellier, A., (1999) Single and
    double optical probes in air–water two-phase flows: real-time signal
    processing and sensor performance, Int. J. Multiphase Flow, Vol.25, pp.229-256.

    [4] Cartellier, A.; Achard, J. L., (1991) Local phase detection probes in
    fluid/fluid twophase flows, Rev. Sci. Instrum. 62, pp.279-303.

    [5] Devin, C., (1959) Survey of thermal, radiation and viscous damping of
    pulsating air bubbles in water, J. Acoust. Soc. Am. Vol.31, pp.1654-1667.

    [6] Doh, D. H.; Hwang, T. G., (2004) 3-D PTV Measurements of the
    Wake of a Sphere. Measurement Science Technology, Dept.Mech.Engng., Vol.15, pp. 1059-1066.

    [7] Hsien, D. Y., (1965) On Dynamics of Bubby Liquids, Advances in Applied
    Mechanics, Vol.26, pp.63-96.

    [8] Greated, C. A.; Emarat, N., (2000) Optical Studies of Wave Kinematics.
    Advances in Coastal and Ocean Engineering, Vol.6, pp.185-223.

    [9] Hassan, Y. A.; Schmidl, W. D., (1998) Investigation of Three-dimensional
    Two-phase Flow Structure in a Bubbly Pipe, Measurement Science Technology, Vol.9, pp.309-326.

    [10] James, P. J.; Alejandro, M. C., Pablo, M. C., (2010) Full-scale two-phase
    flow measurements on Athena research vessel, International Journal of Multiphase Flow, Vol.36, pp.720-737.

    [11] Lerbs H., (1952) Moderately loaded propellers with a finite number of
    bladesn and an arbitrary distribution of circulation, In: SNAME
    Transactions, Vol.60, pp.73-117.

    [12]OpenProp v2.4, (2010) , Theory Document Brenden Epps1.

    [13] Perlin, M.; He, J.; Bernal, L. P., (1996) An Experimental Study of Deep
    Water Plunging Breakers, Physics of Fluids., Vol.8, pp.2365-2374.

    [14] Rodrigues, R. T.; Rubio, J., (2003) New basis for measuring the size
    distribution of bubbles, Miner. Eng., Vol.16, pp.757-765.

    [15] Zhang, W.; Tan, R. B. H., (2003) A model for bubble formation and
    weeping at a submerged orifice with liquid cross-flow, Department of
    Chemical & Environmental Engineering National University of
    Singapore, 10 Kent Ridge Crescent, Singapore 119260.

    [16] Yonguk, R.; Chang, K. A.; Lim, H. J., (2005) Use of bubble image
    velocimetry for measurement of plunging wave impinging on structure and associated greenwater, Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136.

    [17] Yamamoto, F.; Uemura, T.; Iguchi, M.; Ohta, J.; Wada, A.; Mori, K.,
    (1993) 3D PTV based on binary image correlations method and its
    applications to a mixing flowwith a bubbling jet, in: Brebbia, C. A.,
    Carlomagno, G. M. (eds) Computational methods and experimental
    measurements VI, Computational Mechanics, New York: Elsevier, pp.229-246.
    .

    [18] Yoshiaki K., Akira K., Takahito T., and Hideki K., (2000) Experimental
    Study on Microbubbles and Their Applicability to Ships for Skin Friction Reduction, International Journal of Heat and Fluid Flow, Vol.21, pp.582-588.

    [19]王虹斌、張文光,(1990),艦艇氣幕降噪系統與設計思想,艦船科學技術,第二期,頁26-30。

    [20]林武文,(2005),潛艦匿蹤技術,海軍學術月刊,第三十九卷,第一期,頁30。

    [21]林盈伸,(1994),水中氣泡幕的聲學效應,國立台灣大學造船工程學系碩士論文。

    [22]張宗宏,(1996),氣泡幕之聲學效應實驗研究,行政院國家科學委員會專題研究計畫成果報告NSC 85-2611-E-002-011。

    下載圖示 校內:2014-09-11公開
    校外:2017-09-11公開
    QR CODE