簡易檢索 / 詳目顯示

研究生: 莫博任
Mo, Po-Jen
論文名稱: 研製易塗佈之環境友善平面型鈣鈦礦太陽能電池
Air-processed environmental-friendly planar perovskite solar cells
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 114
中文關鍵詞: 平面型鈣鈦礦太陽能電池易塗佈二氧化錫量子點四叔丁基酞菁铜電洞傳輸層綠色化學環境友善技術
外文關鍵詞: Air-processed planar perovskite solar cell, environmental-friendly, green chemistry, SnO2 quantum dots, CuPc
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球暖化與化石能源枯竭的壓力之下,綠色能源的發展成為各國關注的焦點,近年來,鈣鈦礦太陽能電池的出現成為綠色能源發展的一項契機,由於其製作成本相對低廉以及擁有極高的光電轉化效率,因此被視為極具商業化潛力的新世代太陽能電池。本研究的重點是研製低成本、環境友善、製程簡單的鈣鈦礦太陽能電池,主要研究主軸包括: (I)研製二氧化錫量子點作為鈣鈦礦太陽能電池的電子傳輸層;(II)藉由甲咪基的參雜,增加鈣鈦礦層的光吸收以及穩定性;(III)為大幅度低降低鈣鈦礦太陽能電池的材料成本以及簡化製程步驟,使用四叔丁基酞菁铜與碳漿分別取代Spiro-OMeTAD與金屬電極作為鈣鈦礦太陽能電池的電洞傳輸層以及對電極。較值得注意的是:所有鈣鈦礦太陽能電池皆在高濕度的一般環境下製備。
    以簡單、具有最重要的再現性的方法製備二氧化錫量子點水溶液且深入了解二氧化錫量子點的生成機制,並將其應用於鈣鈦礦太陽能電池。與傳統二氧化鈦電子傳輸層比較,二氧化錫量子點層與鈣鈦礦層之間的界面具有更低的電子電洞再結合率,因此,二氧化錫量子點層具有較佳的載子傳輸能力,進而擁有更好的光伏表現。
    為了提升鈣鈦礦層的光子吸收能力與穩定性,因此加入不同比例的甲咪基(10、20、30%)參雜至甲胺鉛碘鈣鈦礦之中,吸收光譜的結果顯示,加入10%甲咪基有利於鈣鈦礦在吸收邊緣的光子吸收且造成吸收光譜紅移,然而加入過多比例的甲咪基會造成鈣鈦礦薄膜更多針孔孔洞,進而影響鈣鈦礦太陽能電池的光電轉化效率。
    藉由簡單的旋塗方式來取代真空沉積四叔丁基酞菁铜電洞傳輸層,而低成本的碳漿則藉由刮刀法塗佈至電洞傳輸層上,並且加熱固化(358 K)。從PL的量測結果可以發現,不論Spiro-OMeTAD或四叔丁基酞菁铜作為電洞傳輸層應用於鈣鈦礦太陽能電池,都有較低的電子電洞再結合率,但使用Spiro-OMeTAD作為電洞傳輸層的鈣鈦礦太陽能電池卻有較差的光伏表現,因為Spiro-OMeTAD有較差的材料熱穩定性。相反地,使用四叔丁基酞菁铜作為電洞傳輸層的鈣鈦礦太陽能電池擁有較佳的光伏表現與較不明顯的遲滯現象。

    Under the pressure of global warming and fossil fuel consumption, the development of green energy has attracted worldwide attention. Recently, the emergence of perovskite solar cells (PSCs) has become a decisive opportunity for green energy. Due to relatively low-fabrication cost and high power conversion efficiency (PCE), PSCs have been considered as the promising next-generation solar cells for commercialization. In the present work, the research was focused on the preparation of low cost, environmental-friendly, and simple manufacturing process PSCs. Thus, the major objectives of this research include: (I) To prepare SnO2 quantum dots (QDs) as the electron transport layer (ETL) for PSCs; (II) To enhance PSC light absorption and stability by adding formamidinium (FA) in the perovskite layer; (III) To replace the expense spiro-OMeTAD and metal electrode with CuPc (copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine) and carbon paste to tremendously reduce the material costs as well as simplify the fabrication process.
    A simple and reproducible method was studied to prepare SnO2 QDs for the PSCs. Compared with the TiO2-based PSCs, the SnO2 QDs layer have less charge carrier recombination at the SnO2/perovskite interface, indicating a better electron transport ability, and thus a greater photovoltaic performance can be obtained.
    To enhance light harvest and stability for the PSCs, FA (10, 20, and 30%) is incorporated to the methylammonium lead iodide (MAPbI3) PSCs. The absorption spectrum of the perovskite layer with 10% FA indicates a better photon absorption at the absorption edge with a red shift. However, more FA incorporation may cause the more pinholes in the perovskite layer leading the poor PCE.
    The CuPc layer was deposited by simple spin coating process instead of the vacuum deposition process. Before post thermal treatment (358 K), the low-cost carbon paste was deposited on the hole transport layer (HTL) by doctor bladed method. The state-state PL indicated that the PSCs using Spiro-OMeTAD and CuPc HTL have less charge carrier recombination rate at the interfaces. However, a poor photovoltaic performance of the Spiro-OMeTAD HTL-based PSC was observed, mainly due to its low thermal stability. On the contrary, the CuPc-based PSCs demonstrate the better performance and less hysteresis behavior.
    Notably, the PSCs were prepared in the air ambient at high relative humidity (50-55%). The developed green chemical and environmental friendly process for PSC manufacturing is expected to be commercialized feasibly especially in promising applications of using the layer-by-layer coating on any sunlight access surfaces such as roofs, walls, and windows as well as flexible substrates, which may make the new photovoltaic technology affordable and sustainable.

    摘要 I ABSTRACT III 誌謝 V CONTENT VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE STUDIES 4 2.1 Perovskite solar cells 4 2.1.1 Structure and properties of perovskite 4 2.1.2 Device architectures of the perovskite solar cells 9 2.1.3 Electron transport materials in PSCs 13 2.1.4 Hole transport materials in PSCs 18 2.2 Preparation of high-quality perovskite films 21 2.2.1 Precursor chemistry of perovskites 21 2.2.2 Deposition methods for the perovskite film 24 2.3 Air-processed PSCs 27 CHAPTER 3 EXPERIMENT METHODS 30 3.1 Experimental procedures 30 3.2 Preparation of SnO2 quantum dots solution 33 3.3 Fabrication of PSCs 33 3.3.1 Preparation of the electron transport layer 33 3.3.2 Preparation of the air-processed perovskite layer 34 3.3.3 Preparation of hole transport layer 34 3.3.5 Preparation of carbon paste electrode 35 3.4 Characterization of PSC matrials 35 3.4.1 X-ray diffraction (XRD) 35 3.4.2 X-ray photoelectron spectroscopy (XPS) 36 3.4.3 Scanning Electron Microscopy (SEM) 36 3.4.4 Transmission Electron Microscopy (TEM) 36 3.4.5 Ultraviolet-visible spectroscopy (UV-Vis) 36 3.4.6 Photoluminescence spectroscopy (PL) 37 3.4.7 Hall Effect measurement 37 3.4.8 Current density-Voltage (J-V) measurements 37 3.4.9 Incident photon-to-current efficiency (IPCE) measurements 38 CHAPTER 4 RESULT AND DISCUSSION 40 4.1 Air-processed HTM-free planar perovskite solar cells containing SnO2 quantum dots layers 40 4.2 Preparation of HTM-free FAxMA1-xPbI3 planar perovskite solar cell in the air ambient 61 4.3 Preparation of CuPc hole transport layer for perovskite solar cells 74 CHAPTER5 CONCLUSIONS 99 REFERENCES 101

    Adhikari, T., Shahiduzzaman, M., Yamamoto, K., Lebel, O., & Nunzi, J. M. (2017). Interfacial modification of the electron collecting layer of low-temperature solution-processed organometallic halide photovoltaic cells using an amorphous perylenediimide. Solar Energy Materials and Solar Cells, 160, 294-300.
    Ahn, N., Kwak, K., Jang, M. S., Yoon, H., Lee, B. Y., Lee, J. K., ... & Choi, M. (2016). Trapped charge-driven degradation of perovskite solar cells. Nature communications, 7, 13422.
    Arora, N., Dar, M. I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S. M., & Grätzel, M. (2017). Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358(6364), 768-771.
    Back, H., Kim, G., Kim, J., Kong, J., Kim, T. K., Kang, H., ... & Lee, K. (2016). Achieving long-term stable perovskite solar cells via ion neutralization. Energy & Environmental Science, 9(4), 1258-1263.
    Bakr, Z. H., Wali, Q., Fakharuddin, A., Schmidt-Mende, L., Brown, T. M., & Jose, R. (2017). Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 34, 271-305.
    Ball, J. M., & Petrozza, A. (2016). Defects in perovskite-halides and their effects in solar cells. Nature Energy, 1(11), 16149.
    Bayu, A., Yoshida, A., Karnjanakom, S., Kusakabe, K., Hao, X., Prakoso, T., ... & Guan, G. (2018). Catalytic conversion of biomass derivatives to lactic acid with increased selectivity in an aqueous tin (ii) chloride/choline chloride system. Green Chemistry, 20(17), 4112-4119.
    Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., ... & Decoppet, J. D. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science advances, 2(1), e1501170.
    Cai, M., Wu, Y., Chen, H., Yang, X., Qiang, Y., & Han, L. (2017). Cost‐performance analysis of perovskite solar modules. Advanced Science, 4(1), 1600269.
    Cao, D. H., Stoumpos, C. C., Malliakas, C. D., Katz, M. J., Farha, O. K., Hupp, J. T., & Kanatzidis, M. G. (2014). Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?. Apl Materials, 2(9), 091101.
    Cao, J., Yu, H., Zhou, S., Qin, M., Lau, T. K., Lu, X., ... & Wong, C. P. (2017). Low-temperature solution-processed NiO x films for air-stable perovskite solar cells. Journal of Materials Chemistry A, 5(22), 11071-11077.
    Cao, X., Zhi, L., Li, Y., Fang, F., Cui, X., Yao, Y., ... & Wei, J. (2017). Control of the morphology of PbI 2 films for efficient perovskite solar cells by strong Lewis base additives. Journal of Materials Chemistry C, 5(30), 7458-7464.
    Chen, D., Huang, S., Huang, R., Zhang, Q., Le, T. T., Cheng, E., ... & Chen, Z. (2018). Highlights on advances in SnO2 quantum dots: insights into synthesis strategies, modifications and applications. Materials Research Letters, 6(9), 462-488.
    Chen, J., Xu, J., Xiao, L., Zhang, B., Dai, S., & Yao, J. (2017). Mixed-Organic-Cation (FA) x (MA) 1–x PbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS applied materials & interfaces, 9(3), 2449-2458.
    Chen, J., Zhou, S., Jin, S., Li, H., & Zhai, T. (2016). Crystal organometal halide perovskites with promising optoelectronic applications. Journal of Materials Chemistry C, 4(1), 11-27.
    Chen, S., Hou, Y., Chen, H., Richter, M., Guo, F., Kahmann, S., ... & Gasparini, N. (2016). Exploring the Limiting Open‐Circuit Voltage and the Voltage Loss Mechanism in Planar CH3NH3PbBr3 Perovskite Solar Cells. Advanced Energy Materials, 6(18), 1600132.
    Chen, Y., He, M., Peng, J., Sun, Y., & Liang, Z. (2016). Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Advanced Science, 3(4), 1500392.
    Cheng, Y., Xu, X., Xie, Y., Li, H. W., Qing, J., Ma, C., ... & Tsang, S. W. (2017). 18% High‐Efficiency Air‐Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar RRL, 1(9), 1700097.
    Chiang, C. H., Nazeeruddin, M. K., Grätzel, M., & Wu, C. G. (2017). The synergistic effect of H 2 O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science, 10(3), 808-817.
    Cigala, R. M., Crea, F., De Stefano, C., Lando, G., Milea, D., & Sammartano, S. (2012). The inorganic speciation of tin (II) in aqueous solution. Geochimica et Cosmochimica Acta, 87, 1-20.
    Correa-Baena, J. P., Abate, A., Saliba, M., Tress, W., Jacobsson, T. J., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727.
    Cui, J., Yuan, H., Li, J., Xu, X., Shen, Y., Lin, H., & Wang, M. (2015). Recent progress in efficient hybrid lead halide perovskite solar cells. Science and technology of advanced materials, 16(3), 036004.
    Das, A., Bonu, V., Prasad, A. K., Panda, D., Dhara, S., & Tyagi, A. K. (2014). The role of SnO 2 quantum dots in improved CH 4 sensing at low temperature. Journal of Materials Chemistry C, 2(1), 164-171.
    Domanski, K., Correa-Baena, J. P., Mine, N., Nazeeruddin, M. K., Abate, A., Saliba, M., ... & Grätzel, M. (2016). Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS nano, 10(6), 6306-6314.
    Dubey, A., Adhikari, N., Mabrouk, S., Wu, F., Chen, K., Yang, S., & Qiao, Q. (2018). A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, 6(6), 2406-2431.
    Duong, T., Peng, J., Walter, D., Xiang, J., Shen, H., Chugh, D., ... & White, T. P. (2018). Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 3(10), 2441-2448.
    Fabregat-Santiago, F., Bisquert, J., Cevey, L., Chen, P., Wang, M., Zakeeruddin, S. M., & Grätzel, M. (2008). Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. Journal of the American Chemical Society, 131(2), 558-562.
    Geng, W., Tong, C. J., Liu, J., Zhu, W., Lau, W. M., & Liu, L. M. (2016). Structures and electronic properties of different CH 3 NH 3 PbI 3/TiO 2 interface: a first-principles study. Scientific reports, 6, 20131.
    Goldschmidt, V. M. (1926). Die gesetze der krystallochemie. Naturwissenschaften, 14(21), 477-485.
    Gonzalez-Carrero, S., Espallargas, G. M., Galian, R. E., & Pérez-Prieto, J. (2015). Blue-luminescent organic lead bromide perovskites: highly dispersible and photostable materials. Journal of Materials Chemistry A, 3(26), 14039-14045.
    Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature materials, 13(9), 838.
    Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature photonics, 8(7), 506.
    Guo, Z., Gao, L., Zhang, C., Xu, Z., & Ma, T. (2018). Low-temperature processed non-TiO 2 electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, 6(11), 4572-4589.
    Hains, A. W., Liang, Z., Woodhouse, M. A., & Gregg, B. A. (2010). Molecular semiconductors in organic photovoltaic cells. Chemical reviews, 110(11), 6689-6735.
    Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J.
    Han, W. Q., & Zettl, A. (2003). Coating single-walled carbon nanotubes with tin oxide. Nano Letters, 3(5), 681-683.
    Heo, J. H., Lee, M. H., Han, H. J., Patil, B. R., Yu, J. S., & Im, S. H. (2016). Highly efficient low temperature solution processable planar type CH 3 NH 3 PbI 3 perovskite flexible solar cells. Journal of Materials Chemistry A, 4(5), 1572-1578.
    Huang, H., Polavarapu, L., Sichert, J. A., Susha, A. S., Urban, A. S., & Rogach, A. L. (2016). Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials, 8(11), e328.
    Huang, J., Yu, X., Xie, J., Xu, D., Tang, Z., Cui, C., & Yang, D. (2016). Ambient Engineering for High-Performance Organic–Inorganic Perovskite Hybrid Solar Cells. ACS applied materials & interfaces, 8(33), 21505-21511.
    Huang, J., Yuan, Y., Shao, Y., & Yan, Y. (2017). Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2(7), 17042.
    Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
    Jeon, N. J., Na, H., Jung, E. H., Yang, T. Y., Lee, Y. G., Kim, G., ... & Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682.
    Jiang, Q., Zhang, X., & You, J. (2018). SnO2: a wonderful electron transport layer for perovskite solar cells. Small, 14(31), 1801154.
    Jung, H. S., & Park, N. G. (2015). Perovskite solar cells: from materials to devices. small, 11(1), 10-25.
    Jung, M., Ji, S. G., Kim, G., & Seok, S. I. (2019). Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews.
    Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900.
    Ke, K., Yamazaki, Y., & Waki, K. (2009). A simple method to controllably coat crystalline SnO2 nanoparticles on multiwalled carbon nanotubes. Journal of nanoscience and nanotechnology, 9(1), 366-370.
    Ke, W., Zhao, D., Grice, C. R., Cimaroli, A. J., Fang, G., & Yan, Y. (2015). Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A, 3(47), 23888-23894.
    Ke, W., Zhao, D., Grice, C. R., Cimaroli, A. J., Ge, J., Tao, H., ... & Yan, Y. (2015). Efficient planar perovskite solar cells using room-temperature vacuum-processed C 60 electron selective layers. Journal of Materials Chemistry A, 3(35), 17971-17976.
    Ko, H. S., Lee, J. W., & Park, N. G. (2015). 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI 2 morphology in two-step deposition of CH 3 NH 3 PbI 3. Journal of Materials Chemistry A, 3(16), 8808-8815.
    Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
    Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal
    Kung, P. K., Li, M. H., Lin, P. Y., Chiang, Y. H., Chan, C. R., Guo, T. F., & Chen, P. (2018). A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Advanced Materials Interfaces, 5(22), 1800882.
    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647.
    Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature communications, 4, 2885.
    Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., & Guo, Z. (2008). Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites. Acta Crystallographica Section B: Structural Science, 64(6), 702-707.
    Li, Y., Meng, L., Yang, Y. M., Xu, G., Hong, Z., Chen, Q., ... & Li, Y. (2016). High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature communications, 7, 10214.
    Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., van Hest, M. F., & Zhu, K. (2018). Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 3(4), 18017.
    Lian, J., Lu, B., Niu, F., Zeng, P., & Zhan, X. (2018). Electron‐Transport Materials in Perovskite Solar Cells. Small Methods, 2(10), 1800082.
    Liang, L., Huang, Z., Cai, L., Chen, W., Wang, B., Chen, K., ... & Fan, B. (2014). Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS applied materials & interfaces, 6(23), 20585-20589.
    Liu, C., Ding, W., Zhou, X., Gao, J., Cheng, C., Zhao, X., & Xu, B. (2017). Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. The Journal of Physical Chemistry C, 121(12), 6546-6553.
    Liu, H., Chen, Z., Wang, H., Ye, F., Ma, J., Zheng, X., ... & Fang, G. (2019). A facile room temperature solution synthesis of SnO 2 quantum dots for perovskite solar cells. Journal of Materials Chemistry A, 7(17), 10636-10643.
    Liu, Z., Sun, B., Liu, X., Han, J., Ye, H., Shi, T., ... & Liao, G. (2018). Efficient Carbon-based CsPbBr 3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material. Nano-micro letters, 10(2), 34.
    Lu, X., Wang, H., Wang, Z., Jiang, Y., Cao, D., & Yang, G. (2016). Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 680, 109-115.
    Mahmood, K., Sarwar, S., & Mehran, M. T. (2017). Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 7(28), 17044-17062.
    Maniarasu, S., Korukonda, T. B., Manjunath, V., Ramasamy, E., Ramesh, M., & Veerappan, G. (2018). Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews, 82, 845-857.
    Manser, J. S., Christians, J. A., & Kamat, P. V. (2016). Intriguing optoelectronic properties of metal halide perovskites. Chemical Reviews, 116(21), 12956-13008.
    Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of colloid and interface science, 488, 373-389.
    Mateen, M., Arain, Z., Liu, C., Yang, Y., Liu, X., Ding, Y., ... & Hayat, T. (2019). High-Quality (FA) X (MA) 1-XPbI3 for Efficient Perovskite Solar Cells Via a Facile Cation-Intermixing Technique. ACS Sustainable Chemistry & Engineering.
    Noh, M. F. M., Teh, C. H., Daik, R., Lim, E. L., Yap, C. C., Ibrahim, M. A., ... & Teridi, M. A. M. (2018). The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 6(4), 682-712.
    NREL, Best Research‐Cell Efficiencies, https://www.nrel.gov/pv/cell‐efficiency.html, (accessed: April 2019).
    Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials today, 18(2), 65-72.
    Qiu, L., Liu, Z., Ono, L. K., Jiang, Y., Son, D. Y., Hawash, Z., ... & Qi, Y. (2018). Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Advanced Functional Materials, 1806779.
    Rahimnejad, S., Kovalenko, A., Forés, S. M., Aranda, C., & Guerrero, A. (2016). Coordination chemistry dictates the structural defects in lead halide perovskites. ChemPhysChem, 17(18), 2795-2798.
    Rajagopal, A., Yao, K., & Jen, A. K. Y. (2018). Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Advanced Materials, 30(32), 1800455.
    Roose, B., Baena, J. P. C., Gödel, K. C., Graetzel, M., Hagfeldt, A., Steiner, U., & Abate, A. (2016). Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy, 30, 517-522.
    Saliba, M., Correa‐Baena, J. P., Grätzel, M., Hagfeldt, A., & Abate, A. (2018). Perovskite solar cells: from the atomic level to film quality and device performance. Angewandte Chemie International Edition, 57(10), 2554-2569.
    Schloemer, T. H., Christians, J. A., Luther, J. M., & Sellinger, A. (2019). Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chemical Science, 10(7), 1904-1935.
    Seok, S. I., Grätzel, M., & Park, N. G. (2018). Methodologies toward highly efficient perovskite solar cells. Small, 14(20), 1704177.
    Sharma, S., Srivastava, A. K., & Chawla, S. (2012). Self assembled surface adjoined mesoscopic spheres of SnO2 quantum dots and their optical properties. Applied Surface Science, 258(22), 8662-8666.
    Song, J., Zheng, E., Wang, X. F., Tian, W., & Miyasaka, T. (2016). Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 144, 623-630.
    Stoumpos, C. C., & Kanatzidis, M. G. (2016). Halide Perovskites: Poor Man's High‐Performance Semiconductors. Advanced Materials, 28(28), 5778-5793.
    Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., ... & Snaith, H. J. (2013). Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156), 341-344.
    Stübinger, T., & Brütting, W. (2001). Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. Journal of Applied Physics, 90(7), 3632-3641.
    Sun, J., Wu, J., Tong, X., Lin, F., Wang, Y., & Wang, Z. M. (2018). Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Advanced Science, 5(5), 1700780.
    Sutherland, B. R., & Sargent, E. H. (2016). Perovskite photonic sources. Nature Photonics, 10(5), 295.
    Tai, Qidong, et al. "Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity." Nature communications 7 (2016): 11105.
    Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2011). Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS nano, 5(6), 5158-5166.
    Tress, W., Marinova, N., Inganäs, O., Nazeeruddin, M. K., Zakeeruddin, S. M., & Graetzel, M. (2014, June). The role of the hole-transport layer in perovskite solar cells-reducing recombination and increasing absorption. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (pp. 1563-1566). IEEE.
    Uchida, S., Xue, J., Rand, B. P., & Forrest, S. R. (2004). Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C 60 active layer. Applied physics letters, 84(21), 4218-4220.
    Ummadisingu, A., & Grätzel, M. (2018). Revealing the detailed path of sequential deposition for metal halide perovskite formation. Science advances, 4(2), e1701402.
    Urbani, M., de la Torre, G., Nazeeruddin, M. K., & Torres, T. (2019). Phthalocyanines and porphyrinoid analogues as hole-and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 48(10), 2738-2766.
    Wang, J., Li, H., Meng, S., Ye, X., Fu, X., & Chen, S. (2017). Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances. RSC Advances, 7(43), 27024-27032.
    Xiong, L., Guo, Y., Wen, J., Liu, H., Yang, G., Qin, P., & Fang, G. (2018). Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 28(35), 1802757.
    Xue, Q., Hu, Z., Liu, J., Lin, J., Sun, C., Chen, Z., ... & Huang, F. (2014). Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. Journal of Materials Chemistry A, 2(46), 19598-19603.
    Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., & Xu, J. (2015). Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. Journal of the American Chemical Society, 137(13), 4460-4468.
    Yang, G., Chen, C., Yao, F., Chen, Z., Zhang, Q., Zheng, X., ... & Ke, W. (2018). Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells. Advanced Materials, 30(14), 1706023.
    Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., ... & Seok, S. I. (2017). Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 356(6345), 1376-1379.
    Yu, W. L., Pei, J., Cao, Y., & Huang, W. (2001). Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. Journal of Applied Physics, 89(4), 2343-2350.
    Zhang, F., Yang, X., Cheng, M., Wang, W., & Sun, L. (2016). Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy, 20, 108-116.
    Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., ... & Li, S. (2018). Perovskite solar cells with ZnO electron‐transporting materials. Advanced Materials, 30(3), 1703737.
    Zhang, Y., Grancini, G., Feng, Y., Asiri, A. M., & Nazeeruddin, M. K. (2017). Optimization of Stable Quasi-Cubic FA x MA1–x PbI3 Perovskite Structure for Solar Cells with Efficiency beyond 20%. ACS Energy Letters, 2(4), 802-806.
    Zhu, L., Xiao, J., Shi, J., Wang, J., Lv, S., Xu, Y., ... & Li, X. (2015). Efficient CH 3 NH 3 PbI 3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 8(4), 1116-1127.
    Zhu, Z., Xu, J. Q., Chueh, C. C., Liu, H., Li, Z. A., Li, X., ... & Jen, A. K. Y. (2016). A Low‐Temperature, Solution‐Processable Organic Electron‐Transporting Layer Based on Planar Coronene for High‐performance Conventional Perovskite Solar Cells. Advanced Materials, 28(48), 10786-10793.

    下載圖示 校內:2024-06-28公開
    校外:2024-06-28公開
    QR CODE