| 研究生: |
唐文駿 Tang, Wen-Chun |
|---|---|
| 論文名稱: |
融合生成式人工智慧反思引導與檢索增強生成技術之虛擬病人系統:探究對護理學生自我調節與反思實踐能力之影響 A Virtual Patient System Integrating Generative AI Guided Reflection and Retrieval-Augmented Generation: Investigating the Impact on Nursing Students’Self-Regulation and Reflective Practice |
| 指導教授: |
黃悅民
Huang, Yueh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 虛擬病人 、結構化反思 、臨床溝通 、生成式 AI 、精準教育 、自我調節學習 |
| 外文關鍵詞: | Virtual Patient, Generative AI, Structured Reflection, Clinical Communication, Self-Regulated Learning, Precision Education |
| 相關次數: | 點閱:26 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床溝通對於促進照護協調與提升病人安全具有關鍵作用,被視為護理學生的核心臨床能力之一。儘管護理教育對此高度重視,教學現場仍充滿挑戰。其中,以客觀結構式臨床評量 (Objective Structured Clinical Examination, OSCE) 為代表的評量形式,雖能系統性檢視學生臨床表現,卻受限於場地、評估人力及標準病人等資源,使學生缺乏足夠且具深度的模擬練習機會。此外,多數學生在練習過程中難以獲得個別化且系統性的回饋,形成練習不足、回饋不明、經驗無法內化的負面循環。
為改善上述問題,本研究開發「虛擬病人輔助反思系統」 (Virtual Patient Reflection Assistance System, VPRSS) ,結合檢索增強生成 (Retrieval Augmented Generation, RAG) 技術,確保虛擬病人回應符合臨床劇本情境,並以嵌入式教學融入「新生兒護理」課程之「腸胃道入院護理評估」單元。同時引入精準教育理念,設計「診斷」與「介入」兩階段流程。「診斷」階段針對學生臨床互動進行語音辨識與語意比對,提供即時分析作為學習診斷依據。「介入」階段則運用生成式人工智慧 (Generative AI, GAI) ,依診斷結果引導學生依Gibbs六階段循環模型進行反思,促進自我調節與經驗內化。
本研究採方便取樣,選取修習該課程之護理系二年級學生,並依期中成績平均分派至實驗組與對照組。兩組皆使用虛擬病人練習,差異在於實驗組於活動後接受生成式人工智慧引導反思,對照組則進行傳統小組討論。結果顯示,VPRSS透過檢索增強生成提升虛擬病人回應與情境模擬的一致性,能在短期活動中顯著提升護理學生臨床溝通知識。而生成式人工智慧引導的反思雖未在本研究中對自我調節學習或反思能力的提升呈現顯著差異,但質性回饋揭示其對護理學生具備多重學習優勢。能幫助學生有結構地檢視臨床互動,同時提供一個低壓且可反覆操作的練習環境,幫助學生在臨床溝通常見的焦慮情境下仍能逐步建立信心與自主學習能力。
Clinical communication is essential for care coordination and patient safety, and is regarded as a core competency for nursing students. However, traditional assessments such as the Objective Structured Clinical Examination (OSCE) are constrained by limited resources, leaving students with insufficient simulation opportunities and feedback.
To address these challenges, this study developed the Virtual Patient Reflection Assistance System (VPRSS), integrating Retrieval-Augmented Generation (RAG) to ensure clinically consistent responses and embedding it into the “Gastrointestinal Admission Nursing Assessment” unit of a neonatal nursing course. The system applied a two-phase design: a “Diagnosis” phase using speech recognition and semantic matching to provide immediate analysis, and an “Intervention” phase where Generative AI guided students through Gibbs’ reflective cycle to support self-regulated learning.
Sophomore nursing students were assigned to experimental and control groups. Both practiced with the virtual patient, but only the experimental group received AI-guided reflection. Results showed that VPRSS significantly improved short-term clinical communication knowledge. Although no significant differences were found between groups in self-regulation or reflective ability, qualitative feedback revealed several learning advantages for nursing students. The AI-guided reflection helped students examine clinical interactions in a structured manner, fostered self-awareness and corrective skills, and provided a low-pressure environment for independent, repeated practice. These features enabled students to gradually build confidence and autonomy in managing communication challenges, highlighting the system’s potential value in clinical communication training.
Aaron van den Oord, S. D., Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu. (2016). WaveNet: A generative model for raw audio. 9th ISCA Speech Synthesis Workshop (SSW 9), 125. https://doi.org/10.48550/arXiv.1609.03499
Adeshola, I., & Adepoju, A. P. (2024). The opportunities and challenges of ChatGPT in education. Interactive Learning Environments, 32(10), 6159-6172. https://doi.org/10.1080/10494820.2023.2253858
Ahmadi, S., Ayazi, Z., & Zarezadeh, Y. (2022). A critical review of reflective models in clinical nursing learning. Journal of Multidisciplinary Care, 11(2), 97-104. https://doi.org/10.34172/jmdc.2022.1385
Ahmadpour, N., Shariati, A., & Moghadam, M. P. (2025). Effect of narrative writing based on Gibbs’ reflective model on the empathy and communication skills of nursing students. BMC Medical Education, 25(1), 10. https://doi.org/10.1186/s12909-024-06593-7
Alasadi, E. A., & Baiz, C. R. (2023). Generative AI in education and research: Opportunities, concerns, and solutions. Journal of Chemical Education, 100(8), 2965-2971. https://doi.org/10.1021/acs.jchemed.3c00323
Alizadeh, M., Behshid, M., Cheraghi, R., & Dehghani, G. (2024). Nursing students’ experiences of professional competence evaluation by Objective Structured Clinical examination method: a qualitative content analysis study. BMC Medical Education, 24(1), 1302. https://doi.org/10.1186/s12909-024-06292-3
Alsharari, A. F., Salihu, D., & Alshammari, F. F. (2025). Effectiveness of virtual clinical learning in nursing education: a systematic review. BMC Nurs, 24(1), 432. https://doi.org/10.1186/s12912-025-03076-y
Angenius, M., & Ghajargar, M. (2023). Design principles for interactive and reflective journaling with AI. Science and Information Conference, 62-81. https://doi.org/10.1007/978-3-031-37963-5_6
Ardian, P., Hariyati, R. T. S., & Afifah, E. (2019). Correlation between implementation case reflection discussion based on the Graham Gibbs Cycle and nurses’ critical thinking skills. Enfermeria Clinica, 29, 588-593. https://doi.org/10.1016/j.enfcli.2019.04.091
Arrogante, O., López-Torre, E. M., Carrión-García, L., Polo, A., & Jiménez-Rodríguez, D. (2021). High-fidelity virtual objective structured clinical examinations with standardized patients in nursing students: an innovative proposal during the COVID-19 pandemic. Healthcare, 9(3), 355. https://doi.org/10.3390/healthcare9030355
Asmar, N., Youssef, N. Y., Malhab, S. B., Bahous, S., & Karam, V. G. Y. (2025). Evaluating construct validity of virtual osces in exceptional conditions. BMC Med Educ, 25(1), 841. https://doi.org/10.1186/s12909-025-07383-5
Ataro, G., Worku, S., & Asaminew, T. (2020). Experience and challenges of objective structured clinical examination (OSCE): perspective of students and examiners in a clinical department of Ethiopian University. Ethiopian Journal of Health Sciences, 30(3). https://doi.org/10.4314/ejhs.v30i3.13
Ateş Akdeniz, A. (2023). Exploring the impact of self-regulated learning intervention on students' strategy use and performance in a design studio course. International Journal of Technology and Design Education, 33(5), 1923-1957. https://doi.org/10.1007/s10798-022-09798-3
Atkins, S., & Murphy, K. (1993). Reflection: a review of the literature. Journal of advanced nursing, 18(8), 1188-1192. https://doi.org/10.1046/j.1365-2648.1993.18081188.x
Avraham, R., Cohen, T., Artzi-Medvedik, R., Hurvitz, N., & Cohen, O. (2023). Effectiveness of a virtual program for OSCE preparation during COVID-19: a descriptive and repeated cross-sectional study among nursing students. BMC nursing, 22(1), 235. https://doi.org/10.1186/s12912-023-01396-5
Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in neural information processing systems, 33, 12449-12460. https://doi.org/10.48550/arXiv.2006.11477
Bao, M. (2019). Can home use of speech-enabled artificial intelligence mitigate foreign language anxiety: Investigation of a concept. Arab World English Journal, 5(5), 28-40. https://doi.org/10.24093/awej/call5.3
Barakat, H., Turk, O., & Demiroglu, C. (2024). Deep learning-based expressive speech synthesis: a systematic review of approaches, challenges, and resources. EURASIP Journal on Audio, Speech, and Music Processing, 2024(1), 11. https://doi.org/10.1186/s13636-024-00329-7
Barrows, H. S. (1993). An overview of the uses of standardized patients for teaching and evaluating clinical skills. AAMC. Academic Medicine, 68(6), 443-451. https://doi.org/10.1097/00001888-199306000-00002
Bassner, P., Frankford, E., & Krusche, S. (2024). Iris: An ai-driven virtual tutor for computer science education. In Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1 (pp. 394-400). https://doi.org/10.1145/3649217.3653543
Bektas, İ., Kudubes, A. A., Ayar, D., & Bektas, M. (2025). The level of nursing students' self-regulated learning and academic locus of control predicting self-confidence and anxiety in clinical decision-making. Nurse Educ Today, 148, 106629. https://doi.org/10.1016/j.nedt.2025.106629
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., & Brunskill, E. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258. https://doi.org/10.1148/ryai.220119
Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E., Pietquin, O., Sharifi, M., Roblek, D., Teboul, O., Grangier, D., & Tagliasacchi, M. (2023). Audiolm: a language modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, 2523-2533. https://doi.org/10.1109/TASLP.2023.3288409
Bowen-Withington, J. (2025). Exploring the Use of Generative AI for Developing Reflective Practice and Critical Thinking in Nursing Undergraduate Education. In Artificial Intelligence in Vocational Education and Training: Understanding Learner and Teacher Perspectives on the Integration of Generative AI through Participatory Action Research (pp. 121-139). Springer. https://doi.org/10.1007/978-981-96-6001-8_8
Chan, S. C. C., Choa, G., Kelly, J., Maru, D., & Rashid, M. A. (2023). Implementation of virtual OSCE in health professions education: A systematic review. Medical education, 57(9), 833-843. https://doi.org/10.1080/10494820.2021.2012812
Chang, C.-Y., Kuo, S.-Y., & Hwang, G.-H. (2022). Chatbot-facilitated nursing education. Educational Technology & Society, 25(1), 15-27. https://www.jstor.org/stable/48647027
Chen, S., Liu, S., Zhou, L., Liu, Y., Tan, X., Li, J., Zhao, S., Qian, Y., & Wei, F. (2024). Vall-e 2: Neural codec language models are human parity zero-shot text to speech synthesizers. arXiv preprint arXiv:2406.05370. https://doi.org/10.48550/arXiv.2406.05370
Chen, S., Yang, L., Zhang, Y., Zhang, M., Xie, Y., Zhu, Z., & Li, J. (2025). Digital Human Technology in E-Learning: Custom Content Solutions. Applied Sciences, 15(7), 3807. https://doi.org/10.3390/app15073807
Chen, X., Cheng, G., Zou, D., Zhong, B., & Xie, H. (2023). Artificial intelligent robots for precision education. Educational Technology & Society, 26(1), 171-186. https://doi.org/10.30191/ETS.202301_26(1).0013
Chen, Z., Liao, Y., Jiang, S., Wang, P., Guo, Y., Wang, Y., & Wang, Y. (2025). Towards Omni-RAG: Comprehensive Retrieval-Augmented Generation for Large Language Models in Medical Applications. arXiv preprint arXiv:2501.02460. https://doi.org/10.48550/arXiv.2501.02460
Chen, Z., Luo, Y., & Sra, M. (2025). Engaging with AI: How Interface Design Shapes Human-AI Collaboration in High-Stakes Decision-Making. arXiv preprint arXiv:2501.16627. https://doi.org/10.48550/arXiv.2501.16627
Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N., Li, T., Li, D., Zhu, B., Zhang, H., Jordan, M., & Gonzalez, J. E. (2024). Chatbot arena: An open platform for evaluating llms by human preference. Forty-first International Conference on Machine Learning. https://doi.org/10.48550/arXiv.2403.04132
Choi, A., Murtha, T. D., Morrison, L. J., & Talwalkar, J. S. (2024). A comparison between in-person and virtual communication skills OSCE for medical students. Journal of Medical Education and Curricular Development, 11, 23821205241241375. https://doi.org/10.1177/23821205241241375
Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015). Attention-based models for speech recognition. Advances in neural information processing systems, 28. https://doi.org/10.48550/arXiv.1506.07503
Clarà, M. (2015). What is reflection? Looking for clarity in an ambiguous notion. Journal of teacher education, 66(3), 261-271. https://doi.org/10.1177/0022487114552028
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England journal of medicine, 372(9), 793-795. https://doi.org/10.1056/NEJMp1500523
Cook, D. A., Erwin, P. J., & Triola, M. M. (2010). Computerized virtual patients in health professions education: a systematic review and meta-analysis. Academic Medicine, 85(10), 1589-1602. https://doi.org/10.1097/ACM.0b013e3181edfe13
Cook, D. A., Overgaard, J., Pankratz, V. S., Del Fiol, G., & Aakre, C. A. (2025). Virtual patients using large language models: Scalable, contextualized simulation of clinician-patient dialogue with feedback. Journal of Medical Internet Research, 27, e68486. https://doi.org/10.2196/68486
Cook, D. A., & Triola, M. M. (2009). Virtual patients: a critical literature review and proposed next steps. Medical education, 43(4), 303-311. https://doi.org/10.1111/j.1365-2923.2008.03286.x
Courteille, O., Bergin, R., Courteille, O., Bergin, R., Stockeld, D., Ponzer, S., & Fors, U. (2008). The use of a virtual patient case in an OSCE-based exam–a pilot study. Medical teacher, 30(3), e66-e76. https://doi.org/10.1080/01421590801910216
Decormeille, G., Geeraerts, T., Descoins, M., & Huet, N. (2025). Screen‐Based Simulation in Nursing School: Help Use and Self‐Regulated Learning. Applied Cognitive Psychology, 39(2), e70046. https://doi.org/10.1002/acp.70046
Desai, S. V., Burk-Rafel, J., Lomis, K. D., Caverzagie, K., Richardson, J., O’Brien, C. L., Andrews, J., Heckman, K., Henderson, D., & Prober, C. G. (2024). Precision education: the future of lifelong learning in medicine. Academic Medicine, 99(4S), S14-S20. https://doi.org/10.1097/ACM.0000000000005601
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), 4171-4186. https://doi.org/10.18653/v1/N19-1423
Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.-E., Lomeli, M., Hosseini, L., & Jégou, H. (2024). The faiss library. arXiv preprint arXiv:2401.08281. https://doi.org/10.48550/arXiv.2401.08281
Eckerström, J., Mårtensson, S., Larsson, M., Knez, R., Ljudvåg, M., El Alaoui, S., Dahlström, K., Elvin Nowak, Y., Stenfors, T., Jayaram-Lindström, N., Kristiansson, M., Fors, U., & Sörman, K. (2025). Virtual patient simulation in an interactive educational module on intimate partner violence: nursing students' experiences-a mixed-methods study. Front Digit Health, 7, 1516379. https://doi.org/10.3389/fdgth.2025.1516379
Elias, I., Zen, H., Shen, J., Zhang, Y., Jia, Y., Skerry-Ryan, R., & Wu, Y. (2021). Parallel Tacotron 2: A non-autoregressive neural TTS model with differentiable duration modeling. arXiv preprint arXiv:2103.14574. https://doi.org/10.48550/arXiv.2103.14574
Escalante, J., Pack, A., & Barrett, A. (2023). AI-generated feedback on writing: Insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20(1), 57. https://doi.org/10.1186/s41239-023-00425-2
Fang, K., Tang, C., & Wang, J. (2025). Evaluating simulated teaching audio for teacher trainees using RAG and local LLMs. Scientific Reports, 15(1), 3633. https://doi.org/10.1038/s41598-025-87898-5
Fathi, J., Rahimi, M., & Derakhshan, A. (2024). Improving EFL learners’ speaking skills and willingness to communicate via artificial intelligence-mediated interactions. System, 121, 103254. https://doi.org/10.1016/j.system.2024.103254
Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126. https://doi.org/10.1007/s12599-023-00834-7
Ganzer, C. A., & Zauderer, C. (2013). Structured learning and self-reflection: Strategies to decrease anxiety in the psychiatric mental health clinical nursing experience. Nursing education perspectives, 34(4), 244-247. https://doi.org/10.5480/1536-5026-34.4.244
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, H., & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2(1). https://doi.org/10.48550/arXiv.2312.10997
Gargari, O. K., & Habibi, G. (2025). Enhancing medical AI with retrieval-augmented generation: A mini narrative review. Digital health, 11, 20552076251337177. https://doi.org/10.1177/20552076251337177
Gibbs, G. (1988). Learning by doing: A guide to teaching and learning methods. Further Education Unit.
Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., & Vaughan, A. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783. https://doi.org/10.48550/arXiv.2407.21783
Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. 2013 IEEE international conference on acoustics, speech and signal processing, 6645-6649. https://doi.org/10.1109/ICASSP.2013.6638947
Greenblatt, R., Denison, C., Wright, B., Roger, F., MacDiarmid, M., Marks, S., Treutlein, J., Belonax, T., Chen, J., & Duvenaud, D. (2024). Alignment faking in large language models. arXiv preprint arXiv:2412.14093. https://doi.org/10.48550/arXiv.2412.14093
Greenleaf Brown, L., Briscoe, G. S., & Grabowsky, A. (2022). The influence of journaling on nursing students: A systematic review. Journal of Nursing Education, 61(1), 29-35. https://doi.org/10.3928/01484834-20211203-01
Gu, X., Yoo, K. M., & Ha, J.-W. (2021). Dialogbert: Discourse-aware response generation via learning to recover and rank utterances. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14), 12911-12919. https://doi.org/10.1609/aaai.v35i14.17527
Gunawan, J. (2023). Exploring the future of nursing: Insights from the ChatGPT model. Belitung Nursing Journal, 9(1), 1. https://doi.org/10.33546/bnj.2551
Ha, E.-H., & Lim, E. (2023). The effect of objective structured clinical examinations for nursing students. PLoS One, 18(6), e0286787. https://doi.org/10.1371/journal.pone.0286787
Hamilton, A., Molzahn, A., & McLemore, K. (2024). The evolution from standardized to virtual patients in medical education. Cureus, 16(10). https://doi.org/10.7759/cureus.71224
Harden, R. M., Stevenson, M., Downie, W. W., & Wilson, G. (1975). Assessment of clinical competence using objective structured examination. Br Med J, 1(5955), 447-451. https://doi.org/10.1136/bmj.1.5955.447
He, R., Cao, J., & Tan, T. (2025). Generative artificial intelligence: a historical perspective. National Science Review, 12(5), nwaf050. https://doi.org/10.1093/nsr/nwaf050
Heyn, L. G., Brembo, E. A., Byermoen, K. R., Cruaud, C., Eide, H., Flo, J., Nordsteien, A., Overgaard, G., & Egilsdottir, H. (2023). Exploring facilitation in virtual simulation in nursing education: A scoping review. PEC Innov, 3, 100233. https://doi.org/10.1016/j.pecinn.2023.100233
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97. https://doi.org/10.1109/MSP.2012.2205597
Høegh-Larsen, A. M., Gonzalez, M. T., Reierson, I. Å., Husebø, S. I. E., Hofoss, D., & Ravik, M. (2023). Nursing students’ clinical judgment skills in simulation and clinical placement: a comparison of student self-assessment and evaluator assessment. BMC nursing, 22(1), 64. https://doi.org/10.1186/s12912-023-01220-0
Hono, Y., Mitsuda, K., Zhao, T., Mitsui, K., Wakatsuki, T., & Sawada, K. (2023). Integrating pre-trained speech and language models for end-to-end speech recognition. arXiv preprint arXiv:2312.03668. https://doi.org/10.48550/arXiv.2312.03668
Hood, S., Barrickman, N., Djerdjian, N., Farr, M., Magner, S., Roychowdhury, H., Gerrits, R., Lawford, H., Ott, B., & Ross, K. (2021). “I like and prefer to work alone”: Social anxiety, academic self-efficacy, and students’ perceptions of active learning. CBE—Life Sciences Education, 20(1), ar12. https://doi.org/10.1187/cbe.19-12-0271
Hu, Y.-H. (2022). Effects and acceptance of precision education in an AI-supported smart learning environment. Education and Information Technologies, 27(2), 2013-2037. https://doi.org/10.1007/s10639-021-10664-3
Huang, L., Lan, H., Sun, Z., Shi, C., & Bai, T. (2024). Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval. arXiv preprint arXiv:2410.23041. https://doi.org/10.1109/ICKG63256.2024.00023
Huang, Z., Li, H., & Lei, M. (2020). Devicetts: A small-footprint, fast, stable network for on-device text-to-speech. arXiv preprint arXiv:2010.15311. https://doi.org/10.48550/arXiv.2010.15311
Hwang, G.-J., Chang, C.-Y., & Ogata, H. (2022). The effectiveness of the virtual patient-based social learning approach in undergraduate nursing education: A quasi-experimental study. Nurse education today, 108, 105164. https://doi.org/10.1016/j.nedt.2021.105164
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: a systematic review. Educational Technology Research and Development, 68(4), 1961-1990. https://doi.org/10.1007/s11423-020-09788-z
Ingham-Broomfield, B. (2021). A nurses' guide to using models of reflection. TheAustralian Journal of Advanced Nursing, 38(4), 62-67. https://search.informit.org/doi/10.3316/informit.191541276970614
Jang, H., Lee, M., & Lee, N. J. (2022). Communication education regarding patient safety for registered nurses in acute hospital settings: a scoping review protocol. BMJ Open, 12(2), e053217. https://doi.org/10.1136/bmjopen-2021-053217
Kaligotla, L., Bhat, S., Chicas, R., Irish, J., McDermott, C., & Chance-Revels, R. (2025). Leveraging Narrative Reflective Writing to Teach Nursing Students About Social Determinants of Health by Harnessing “Small Moments”. Nurse Educator, 50(2), 67-72. https://doi.org/10.1097/nne.0000000000001763
Kelly, M. A., Mitchell, M. L., Henderson, A., Jeffrey, C. A., Groves, M., Nulty, D. D., Glover, P., & Knight, S. (2016). OSCE best practice guidelines—applicability for nursing simulations. Advances in Simulation, 1, 1-10. https://doi.org/10.1186/s41077-016-0014-1
Kestin, G., Miller, K., Klales, A., Milbourne, T., & Ponti, G. (2024). Ai tutoring outperforms active learning. https://doi.org/10.21203/rs.3.rs-4243877/v1
Khan, K. Z., Ramachandran, S., Gaunt, K., & Pushkar, P. (2013). The objective structured clinical examination (OSCE): AMEE guide no. 81. Part I: an historical and theoretical perspective. Medical teacher, 35(9), e1437-e1446. https://doi.org/10.3109/0142159X.2013.818634
Kheddar, H., Hemis, M., & Himeur, Y. (2024). Automatic speech recognition using advanced deep learning approaches: A survey. Information Fusion, 102422. https://doi.org/10.1016/j.inffus.2024.102422
Kim, J., Kim, S., Kong, J., & Yoon, S. (2020). Glow-tts: A generative flow for text-to-speech via monotonic alignment search. Advances in neural information processing systems, 33, 8067-8077. https://doi.org/10.48550/arXiv.2005.11129
Kim, Y., Lee, J., Kim, S., Park, J., & Kim, J. (2024). Understanding users’ dissatisfaction with chatgpt responses: Types, resolving tactics, and the effect of knowledge level. Proceedings of the 29th International Conference on Intelligent User Interfaces, 385-404. https://doi.org/10.1145/3640543.3645148
Kleimola, R., López-Pernas, S., Väisänen, S., Saqr, M., Sointu, E., & Hirsto, L. (2023). Learning analytics to explore the motivational profiles of non-traditional practical nurse students: a mixed-methods approach. Empirical research in vocational education and training, 15(1), 11. https://doi.org/https://doi.org/10.1186/s40461-023-00150-0
Kochmar, E., Vu, D. D., Belfer, R., Gupta, V., Serban, I. V., & Pineau, J. (2022). Automated data-driven generation of personalized pedagogical interventions in intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 32(2), 323-349. https://doi.org/https://doi.org/10.1007/s40593-021-00267-x
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. https://carleton-wp-production.s3.amazonaws.com/uploads/sites/313/2022/12/Experiential_Learning_Experience_As_The_Source_Of_-1.pdf
Kong, J., Kim, J., & Bae, J. (2020). Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. Advances in neural information processing systems, 33, 17022-17033. https://doi.org/10.48550/arXiv.2010.05646
Krupp, L., Steinert, S., Kiefer-Emmanouilidis, M., Avila, K. E., Lukowicz, P., Kuhn, J., Küchemann, S., & Karolus, J. (2024). Challenges and opportunities of moderating usage of large language models in education. Proceedings of the International Conference on Mobile and Ubiquitous Multimedia, 249-254. https://doi.org/10.1145/3701571.3701590
Kumar, H., Xiao, R., Lawson, B., Musabirov, I., Shi, J., Wang, X., Luo, H., Williams, J. J., Rafferty, A. N., & Stamper, J. (2024). Supporting self-reflection at scale with large language models: Insights from randomized field experiments in classrooms. Proceedings of the eleventh ACM conference on learning@ scale, 86-97. https://doi.org/10.1145/3657604.3662042
Kumar, Y., Koul, A., & Singh, C. (2023). A deep learning approaches in text-to-speech system: a systematic review and recent research perspective. Multimedia Tools and Applications, 82(10), 15171-15197. https://doi.org/10.1007/s11042-022-13943-4
Leal, P., Poeira, A., Mendes, D. A., Batalha, N., Franco, H., Nunes, L., Marques, F., Pađen, L., Stefaniak, M., Pérez-Perdomo, A., Bangels, L., Lemmens, K., & Amaral, G. (2024). Teaching and Learning Clinical Reasoning in Nursing Education: A Student Training Course. Healthcare (Basel), 12(12). https://doi.org/10.3390/healthcare12121219
Lee, H.-Y., Chen, P.-H., Wang, W.-S., Huang, Y.-M., & Wu, T.-T. (2024). Empowering ChatGPT with guidance mechanism in blended learning: Effect of self-regulated learning, higher-order thinking skills, and knowledge construction. International Journal of Educational Technology in Higher Education, 21(1), 16. https://doi.org/10.1186/s41239-024-00447-4
Lee, H.-Y., Lin, C.-J., Wang, W.-S., Chang, W.-C., & Huang, Y.-M. (2023). Precision education via timely intervention in K-12 computer programming course to enhance programming skill and affective-domain learning objectives. International journal of STEM education, 10(1), 52. https://doi.org/10.1186/s40594-023-00444-5
Lee, J., Kim, H., Kim, K. H., Jung, D., Jowsey, T., & Webster, C. S. (2020). Effective virtual patient simulators for medical communication training: a systematic review. Medical education, 54(9), 786-795. https://doi.org/10.1111/medu.14152
Lee, T.-Y., Li, C.-C., Chou, K.-R., Chung, M.-H., Hsiao, S.-T., Guo, S.-L., Hung, L.-Y., & Wu, H.-T. (2023). Machine learning-based speech recognition system for nursing documentation–A pilot study. International Journal of Medical Informatics, 178, 105213. https://doi.org/10.1016/j.ijmedinf.2023.105213
Leon, C., Mano, L. Y., Fernandes, D. D. S., Paula, R. A. P., Brasil, G. D. C., & Ribeiro, L. M. (2023). Artificial intelligence in the analysis of emotions of nursing students undergoing clinical simulation. Rev Bras Enferm, 76Suppl 4(Suppl 4), e20210909. https://doi.org/10.1590/0034-7167-2021-0909
Leonard, B., Shuhaibar, E. L., & Chen, R. (2010). Nursing student perceptions of intraprofessional team education using high-fidelity simulation. Journal of Nursing Education, 49(11), 628-631. https://doi.org/10.3928/01484834-20100730-06
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., & Rocktäschel, T. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33, 9459-9474. https://doi.org/10.48550/arXiv.2005.11401
Li, Z., Asoodar, M., de Jong, N., Keulers, T., Liu, X., & Dolmans, D. (2024). Perception of enhanced learning in medicine through integrating of virtual patients: an exploratory study on knowledge acquisition and transfer. BMC Medical Education, 24(1), 647. https://doi.org/10.1186/s12909-024-05624-7
Liang, S.-Y., Chuang, Y.-H., & Wu, S.-F. (2012). Preliminarily application of content analysis to qualitative nursing data. Hu Li Za Zhi, 59(5), 84. https://doi.org/10.6224/JN.59.5.84
Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The international journal of management education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790
Lin, C.-J., Lee, H.-Y., Wang, W.-S., Huang, Y.-M., & Wu, T.-T. (2025). Enhancing reflective thinking in STEM education through experiential learning: The role of generative AI as a learning aid. Education and Information Technologies, 30(5), 6315-6337. https://doi.org/10.1007/s10639-024-13072-5
Lin, Y.-S., & Lai, Y.-H. (2021). Analysis of AI precision education strategy for small private online courses. Frontiers in Psychology, 12, 749629. https://doi.org/10.3389/fpsyg.2021.749629
Liu, C., Hou, J., Tu, Y.-F., Wang, Y., & Hwang, G.-J. (2023). Incorporating a reflective thinking promoting mechanism into artificial intelligence-supported English writing environments. Interactive Learning Environments, 31(9), 5614-5632. https://doi.org/10.1080/10494820.2021.2012812
Lodge, J. M., Thompson, K., & Corrin, L. (2023). Mapping out a research agenda for generative artificial intelligence in tertiary education. Australasian Journal of Educational Technology, 39(1), 1-8. https://doi.org/10.14742/ajet.8695
Low, Y. S., Jackson, M. L., Hyde, R. J., Brown, R. E., Sanghavi, N. M., Baldwin, J. D., Pike, C. W., Muralidharan, J., Hui, G., & Alexander, N. (2024). Answering real-world clinical questions using large language model based systems. arXiv preprint arXiv:2407.00541. https://doi.org/10.48550/arXiv.2407.00541
Machado, D. R., Brás, M. M., Almeida, A. L., & Vilela, C. (2025). The Relationship Between Nurses' Emotional Competence and Evidence-Based Nursing: A Scoping Review. Nurs Rep, 15(4). https://doi.org/10.3390/nursrep15040124
Maicher, K. R., Stiff, A., Scholl, M., White, M., Fosler-Lussier, E., Schuler, W., Serai, P., Sunder, V., Forrestal, H., & Mendella, L. (2023). Artificial intelligence in virtual standardized patients: combining natural language understanding and rule based dialogue management to improve conversational fidelity. Medical teacher, 45(3), 279-285. https://doi.org/10.1080/0142159X.2022.2130216
Malau-Aduli, B. S., Jones, K., Saad, S., & Richmond, C. (2022). Has the OSCE met its final demise? rebalancing clinical assessment approaches in the peri-pandemic world. Frontiers in medicine, 9, 825502. https://doi.org/10.3389/fmed.2022.825502
Maleki, A., Picolo, C., & Verrett, J. (2018). Effect of a mini lesson on self-regulated learning on students’ learning. Proceedings of the Canadian Engineering Education Association (CEEA). https://doi.org/10.24908/pceea.v0i0.13023
Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A., & Bengio, Y. (2016). SampleRNN: An unconditional end-to-end neural audio generation model. arXiv preprint arXiv:1612.07837. https://doi.org/10.48550/arXiv.1612.07837
Miao, C., Liang, S., Chen, M., Ma, J., Wang, S., & Xiao, J. (2020). Flow-TTS: A non-autoregressive network for text to speech based on flow. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7209-7213. https://doi.org/10.1109/ICASSP40776.2020.9054484
Miao, J., Thongprayoon, C., Suppadungsuk, S., Garcia Valencia, O. A., & Cheungpasitporn, W. (2024). Integrating retrieval-augmented generation with large language models in nephrology: advancing practical applications. Medicina, 60(3), 445. https://doi.org/10.3390/medicina60030445
Miller, E., & Green, A. R. (2007). Student reflections on learning cross-cultural skills through a ‘cultural competence’OSCE. Medical teacher, 29(4), e76-e84. https://doi.org/10.1080/01421590701266701
Mitchell, O., Cotton, N., Leedham‐Green, K., Elias, S., & Bartholomew, B. (2021). Video‐assisted reflection: improving OSCE feedback. The Clinical Teacher, 18(4), 409-416. https://doi.org/10.1111/tct.13354
Moghadam, M. P., Nasiri, A., & Mahmoudirad, G. (2025). Patient communication as the missing item in clinical nursing education: A qualitative content analysis study. J Educ Health Promot, 14, 22. https://doi.org/10.4103/jehp.jehp_1686_23
Muennighoff, N., Tazi, N., Magne, L., & Reimers, N. (2022). Mteb: Massive text embedding benchmark. arXiv preprint arXiv:2210.07316. https://doi.org/10.48550/arXiv.2210.07316
Naber, J., & Markley, L. (2017). A guide to nursing students' written reflections for students and educators. Nurse Education in Practice, 25, 1-4. https://doi.org/10.1016/j.nepr.2017.04.004
Ng, K. K. Y., Matsuba, I., & Zhang, P. C. (2025). RAG in health care: a novel framework for improving communication and decision-making by addressing LLM limitations. Nejm Ai, 2(1), AIra2400380. https://doi.org/10.1056/AIra2400380
Ning, Y., He, S., Wu, Z., Xing, C., & Zhang, L.-J. (2019). A review of deep learning based speech synthesis. Applied Sciences, 9(19), 4050. https://doi.org/10.3390/app9194050
Nomura, T., Kanda, T., Suzuki, T., & Yamada, S. (2020). Do people with social anxiety feel anxious about interacting with a robot? Ai & Society, 35(2), 381-390. https://doi.org/10.1007/s00146-019-00889-9
Nursing, A. A. o. C. o. (2021). The essentials: Core competencies for professional nursing education. https://www.aacnnursing.org/Portals/0/PDFs/Publications/Essentials-2021.pdf
OpenAI. (2022). Introducing Whisper. https://openai.com/index/whisper/
Oralbekova, D., Mamyrbayev, O., Kassymova, D., & Othman, M. (2024). Current advances and algorithmic solutions in speech generation. Vibroengineering Procedia, 54, 160-166. https://doi.org/10.21595/vp.2024.23940
Pai, H.-C. (2015). The effect of a self-reflection and insight program on the nursing competence of nursing students: a longitudinal study. Journal of professional Nursing, 31(5), 424-431. https://doi.org/10.1016/j.profnurs.2015.03.003
Patel, K. M., & Metersky, K. (2022). Reflective practice in nursing: A concept analysis. International Journal of Nursing Knowledge, 33(3), 180-187. https://doi.org/10.1111/2047-3095.12350
Pereira, D. S., Falcão, F., Nunes, A., Santos, N., Costa, P., & Pêgo, J. M. (2023). Designing and building OSCEBot® for virtual OSCE–Performance evaluation. Medical Education Online, 28(1), 2228550. https://doi.org/10.1080/10872981.2023.2228550
Perković, G., Drobnjak, A., & Botički, I. (2024). Hallucinations in llms: Understanding and addressing challenges. 2024 47th MIPRO ICT and electronics convention (MIPRO), 2084-2088. https://doi.org/10.1109/MIPRO60963.2024.10569238
Pesovski, I., Santos, R., Henriques, R., & Trajkovik, V. (2024). Generative AI for customizable learning experiences. Sustainability, 16(7), 3034. https://doi.org/10.3390/su16073034
Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational psychology review, 16(4), 385-407. https://doi.org/10.1007/s10648-004-0006-x
Potter, L., & Jefferies, C. (2024). Enhancing communication and clinical reasoning in medical education: Building virtual patients with generative AI. Future healthcare journal, 11, 100043. https://doi.org/10.1016/j.fhj.2024.100043
Pretorius, L., & Ford, A. (2016). Reflection for learning: teaching reflective practice at the beginning of university study. International journal of teaching and learning in higher education, 28(2), 241-253. https://eric.ed.gov/?id=EJ1111149
Qian, H., Zhang, P., Liu, Z., Mao, K., & Dou, Z. (2024). Memorag: Moving towards next-gen rag via memory-inspired knowledge discovery. arXiv preprint arXiv:2409.05591, 1. https://doi.org/10.48550/arXiv:2409.05591v2
Radford, L. (2022). Introducing equations in early algebra. ZDM–Mathematics Education, 54(6), 1151-1167. https://doi.org/10.1016/j.nedt.2018.10.019
Reid, J. R. (2023). Precision Education for Personalized Learning. J Am Coll Radiol, 20(11), 1131-1134. https://doi.org/10.1016/j.jacr.2023.05.018
Reljić, N. M., Pajnkihar, M., & Fekonja, Z. (2019). Self-reflection during first clinical practice: The experiences of nursing students. Nurse education today, 72, 61-66. https://doi.org/10.1016/j.nedt.2018.10.019
Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T.-Y. (2019). Fastspeech: Fast, robust and controllable text to speech. Advances in neural information processing systems, 32. https://doi.org/10.48550/arXiv.1905.09263
Rogers, S. L., Priddis, L. E., Michels, N., Tieman, M., & Van Winkle, L. J. (2019). Applications of the reflective practice questionnaire in medical education. BMC Medical Education, 19, 1-11. https://doi.org/10.1186/s12909-019-1481-6
Roumeliotis, K. I., & Tselikas, N. D. (2023). Chatgpt and open-ai models: A preliminary review. Future Internet, 15(6), 192. https://doi.org/10.3390/fi15060192
Samuel, A., Soh, M., & Jung, E. (2025). Enhancing reflective practice with ChatGPT: A new approach to assignment design. Medical teacher, 1-3. https://doi.org/10.1080/0142159X.2025.2461534
Sardesai, N., Russo, P., Martin, J., & Sardesai, A. (2024). Utilizing generative conversational artificial intelligence to create simulated patient encounters: a pilot study for anaesthesia training. Postgraduate medical journal, 100(1182), 237-241. https://doi.org/10.1093/postmj/qgad137
Schaefer, K. M., & Zygmont, D. (2003). Analyzing the Teaching Style of Nursing Faculty: Does It Promote a: STUDENT-CENTERED OR TEACHER-CENTERED Learning Environment? Nursing education perspectives, 24(5), 238-245. https://pubmed.ncbi.nlm.nih.gov/14535144/
Schön, D. A. (2017). The reflective practitioner: How professionals think in action. Routledge. https://doi.org/10.4324/9781315237473
Sedlbauer, J., Cincera, J., Slavík, M., & Hartlová, A. (2024). Students' reflections on their experience with ChatGPT. Journal of Computer Assisted Learning, 40(4), 1526-1534. https://doi.org/10.1111/jcal.12967
Seo, Y. H., & Eom, M. R. (2021). The effect of simulation nursing education using the outcome-present state-test model on clinical reasoning, the problem-solving process, self-efficacy, and clinical competency in Korean nursing students. Healthcare, 9(3), 243. https://doi.org/10.3390/healthcare9030243
Shahade, A. K., & Deshmukh, P. V. (2024). Enhancing Natural Language Processing: A Comprehensive Review of Retrieval Augmented Generation. 2024 4th International Conference on Sustainable Expert Systems (ICSES),
Sharkiya, S. H. (2023). Quality communication can improve patient-centred health outcomes among older patients: a rapid review. BMC Health Services Research, 23(1), 886. https://doi.org/10.1186/s12913-023-09869-8
Shen, M., Shen, Y., Liu, F., & Jin, J. (2025). Prompts, privacy, and personalized learning: integrating AI into nursing education-a qualitative study. BMC Nurs, 24(1), 470. https://doi.org/10.1186/s12912-025-03115-8
Sim, J. J. M., Rusli, K. D. B., Seah, B., Levett-Jones, T., Lau, Y., & Liaw, S. Y. (2022). Virtual Simulation to Enhance Clinical Reasoning in Nursing: A Systematic Review and Meta-analysis. Clin Simul Nurs, 69, 26-39. https://doi.org/10.1016/j.ecns.2022.05.006
Sim, J. J. M., Rusli, K. D. B., Seah, B., Levett-Jones, T., Lau, Y., & Liaw, S. Y. (2022). Virtual simulation to enhance clinical reasoning in nursing: a systematic review and meta-analysis. Clinical simulation in nursing, 69, 26-39. https://doi.org/10.1016/j.ecns.2022.05.006
Sitzmann, T., & Ely, K. (2011). A meta-analysis of self-regulated learning in work-related training and educational attainment: what we know and where we need to go. Psychological bulletin, 137(3), 421. https://doi.org/10.1037/a0022777
Smith, T. (2021). Guided reflective writing as a teaching strategy to develop nursing student clinical judgment. Nursing forum, 56(2), 241-248. https://doi.org/10.1111/nuf.12528
Son, H. K. (2023). Effects of simulation with problem-based learning (S-PBL) on nursing students’ clinical reasoning ability: based on Tanner’s clinical judgment model. BMC Medical Education, 23(1), 601. https://doi.org/10.1186/s12909-023-04567-9
Song, Y.-K., Chung, E. K., Lee, Y. S., Yoon, J.-H., & Kim, H. (2023). Objective structured clinical examination as a competency assessment tool of students’ readiness for advanced pharmacy practice experiences in South Korea: a pilot study. BMC Medical Education, 23(1), 231. https://doi.org/10.1186/s12909-023-04226-z
Song, Y., Zhang, R., Li, Z., Xin, C., & Ding, N. (2024). Unveiling the link between self-regulated learning and academic success: a longitudinal study on Chinese medical students. Advances in Health Sciences Education, 1-17. https://doi.org/10.1007/s10459-024-10400-9
Sotelo, J., Mehri, S., Kumar, K., Santos, J. F., Kastner, K., Courville, A., & Bengio, Y. (2017). Char2wav: End-to-end speech synthesis. https://doi.org/10.48550/arXiv.2302.13971
Srinivasan, M., Venugopal, A., Venkatesan, L., & Kumar, R. (2024). Navigating the Pedagogical Landscape: Exploring the Implications of AI and Chatbots in Nursing Education. JMIR Nurs, 7, e52105. https://doi.org/10.2196/52105
Strik, H., & Cucchiarini, C. (1999). Modeling pronunciation variation for ASR: A survey of the literature. Speech Communication, 29(2-4), 225-246. https://doi.org/10.1016/S0167-6393(99)00038-2
Tabas, N. D., Amouzeshi, Z., & Vagharseyyedin, S. A. (2024). Comparison of the effects of group and individual reflection methods on self-regulated learning strategies and learning motivation among emergency medical technicians: a quasi-experimental study. BMC Emergency Medicine, 24(1), 233. https://doi.org/10.1186/s12873-024-01147-y
Tagawa, M., & Imanaka, H. (2010). Reflection and self‐directed and group learning improve OSCE scores. The Clinical Teacher, 7(4), 266-270. https://doi.org/10.1111/j.1743-498X.2010.00377.x
Tanimura, C., Okuda, R., Tokushima, Y., Matsumoto, Y., Katou, S., Miyoshi, M., Oshima, A., Yoshimura, J., Fukada, M., & Sasaki, K. (2023). Examining the reliability and validity of a self-regulated learning strategy scale for undergraduate nursing students and effective factors of self-regulated learning strategies. Nurse education today, 128, 105872. https://doi.org/10.1016/j.nedt.2023.105872
Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., & Millican, K. (2023). Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805. https://doi.org/10.48550/arXiv.2312.11805
Topaz, M., Peltonen, L.-M., Michalowski, M., Stiglic, G., Ronquillo, C., Pruinelli, L., Song, J., O'connor, S., Miyagawa, S., & Fukahori, H. (2025). The ChatGPT effect: nursing education and generative artificial intelligence. Journal of Nursing Education, 64(6), e40-e43. https://doi.org/10.3928/01484834-20240126-01
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., & Azhar, F. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971. https://doi.org/10.48550/arXiv.2302.13971
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. https://doi.org/10.48550/arXiv.1706.03762
Wang, H., Li, J., Wu, H., Hovy, E., & Sun, Y. (2023). Pre-trained language models and their applications. Engineering, 25, 51-65. https://doi.org/10.1016/j.eng.2022.04.024
Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: insights from a meta-analysis. Humanities and Social Sciences Communications, 12(1), 1-21. https://doi.org/10.1057/s41599-025-04787-y
Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L., Jiang, D., Majumder, R., & Wei, F. (2022). Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint arXiv:2212.03533. https://doi.org/10.48550/arXiv.2212.03533
Wang, S., Yu, X., Wang, M., Chen, W., Zhu, Y., & Dou, Z. (2024). Richrag: Crafting rich responses for multi-faceted queries in retrieval-augmented generation. arXiv preprint arXiv:2406.12566. https://doi.org/10.48550/arXiv.2406.12566
Wang, Y., Leung, J., & Shen, Z. (2025). RoleRAG: Enhancing LLM Role-Playing via Graph Guided Retrieval. arXiv preprint arXiv:2505.18541. https://doi.org/10.48550/arXiv.2505.18541
Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., & Bengio, S. (2017). Tacotron: Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135. https://doi.org/10.48550/arXiv.1703.10135
Wilding, P. M. (2008). Reflective practice: a learning tool for student nurses. British Journal of Nursing, 17(11), 720-724. https://doi.org/10.12968/bjon.2008.17.11.29644
Wu, M.-L., Chao, L.-F., & Hung, Y.-T. (2024). Training students to serve as standardized patients in an objective structured clinical examination is feasible: A mixed-methods study. Nurse Education in Practice, 79, 104069. https://doi.org/10.1016/j.nepr.2024.104069
Yagi, M. S., Murakami, R., Tsuzuku, S., Suzuki, M., Nakano, H., & Suzuki, K. (2019). Using learning analytics to build a learning support program for distance learning in nursing. 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), 347-350. https://doi.org/10.1109/IIAI-AAI.2019.00076
Yan, L., Echeverria, V., Jin, Y., Fernandez‐Nieto, G., Zhao, L., Li, X., Alfredo, R., Swiecki, Z., Gašević, D., & Martinez‐Maldonado, R. (2024). Evidence‐based multimodal learning analytics for feedback and reflection in collaborative learning. British Journal of Educational Technology, 55(5), 1900-1925. https://doi.org/10.1111/bjet.13498
Yang, J., Zhou, W. J., Zhou, S. C., Luo, D., Liu, Q., Wang, A.-L., Yu, S.-H., Zhu, X.-P., He, X. Y., Hu, F., Yang, B. X., & Chen, J. (2024). Integrated virtual simulation and face-to-face simulation for clinical judgment training among undergraduate nursing students: a mixed-methods study. BMC Medical Education, 24(1), 32. https://doi.org/10.1186/s12909-023-04988-6
Yang, S. J. (2021). Precision education-a new challenge for AI in education. Journal of Educational Technology & Society, 24(1). https://doi.org/10.30191/ETS.202101_24(1).0008
Yu, D., & Deng, L. (2016). Automatic speech recognition (Vol. 1). Springer. https://doi.org/ 10.1007/978-1-4471-5779-3
Yuan, B., & Hu, J. (2024). Generative AI as a Tool for Enhancing Reflective Learning in Students. arXiv preprint arXiv:2412.02603. https://doi.org/10.48550/arXiv.2412.02603
Zayyan, M. (2011). Objective structured clinical examination: the assessment of choice. Oman medical journal, 26(4), 219. https://doi.org/10.5001/omj.2011.55
Zeng, W., Goh, Y. X., Ponnamperuma, G., Liaw, S. Y., Lim, C. C., Jayarani, D., Paramasivam, O., Chia, S. Y., & de Bruin, A. (2024). Promotion of self-regulated learning through internalization of critical thinking, assessment and reflection to empower learning (iCARE): A quasi-experimental study. Nurse education today, 142, 106339. https://doi.org/10.1016/j.nedt.2024.106339
Zhan, T.-t., Wang, L.-l., Wang, Y., & Sun, C.-j. (2023). Master of nursing specialist experiences of an internship through the use of written reflections: A qualitative research study. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13299
Zhang, D., Zhang, X., Zhan, J., Li, S., Zhou, Y., & Qiu, X. (2024). Speechgpt-gen: Scaling chain-of-information speech generation. arXiv preprint arXiv:2401.13527. https://doi.org/10.48550/arXiv.2401.13527
Zhang, X., Zhang, C., Sun, J., Xiao, J., Yang, Y., & Luo, Y. (2025). Eduplanner: Llm-based multi-agent systems for customized and intelligent instructional design. IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2025.3561332
Zhang, Z., Feng, Y., & Zhang, M. (2025). LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers. arXiv preprint arXiv:2502.18139. https://doi.org/10.48550/arXiv.2502.18139
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2
Zolnoori, M., Zolnour, A., Vergez, S., Sridharan, S., Spens, I., Topaz, M., Noble, J. M., Bakken, S., Hirschberg, J., & Bowles, K. (2025). Beyond electronic health record data: leveraging natural language processing and machine learning to uncover cognitive insights from patient-nurse verbal communications. Journal of the American Medical Informatics Association, 32(2), 328-340. https://doi.org/10.1093/jamia/ocae300
許玉雲, & 王美卿. (2012). 反思寫作在護理上之應用以反思實習日誌為例. 志為護理-慈濟護理雜誌, 11(1), 68-73. https://doi.org/10.6974%2fTCNJ.201202.0066