| 研究生: |
黃珮瑜 Huang, Pei-Yu |
|---|---|
| 論文名稱: |
多苯并[6]-、[7]-螺旋烴之合成、結構分析及性質探討 Syntheses, Structural Analyses, and Properties of Multibenzo-fused [6]Helicenes and [7]Helicenes |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 螺旋烴 、[2+2+2]環化反應 、翻轉活化能 |
| 外文關鍵詞: | Helicenes, [2+2+2] cyclization, Inversion energy |
| 相關次數: | 點閱:30 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討具有軸手性的螺旋烴分子,因此我們的目標為合成皆由苯環所構成的[7]-螺旋烴5和[6]-螺旋烴27。在合成過程中,我們嘗試許多以苉為主體的碘化物為起始物的合成方式,然而在反應過程中遇到許多困難,例如:脫氫氧化不完全、立體障礙及重排反應的因素,導致反應無法順利進行。最終合成策略是藉由改變主體結構透過銠金屬催化條件下進行[2+2+2]環化反應得到最終產物5。將化合物5與本實驗室已成功製備出的化合物22進行分子結構上的比較,藉由Xray單晶繞射儀數據可知,化合物5在結構上所受的扭曲程度大於化合物22。此外,我們順利地製備以[6]-螺旋烴為主體的目標產物27,將最終產物5和27進行基本的光物理及電化學性質探討。
綜合以上兩個目標產物5和27,預期透過具有軸手性的管柱進行分離,進而推算出實際分子的翻轉活化能與理論計算值進行比較及分析。然而,因為分離的效果不理想,因此調整分離條件例如:溶劑比例、流速而提升分離效率將會是我們未來的首要目標。
In this study, we have tried many methods to synthesize tetrabenzo-[f,i,o,r]heptahelicene 5 by taking compound 1 as a starting material. However, there were many difficulties in the process. We finally utilized Rh complex to catalyze the reaction of [2+2+2] cyclization. In order to analyze the degree of distortion, we compared compound 5 with [7]-helicene 22. Degree of distortion can be noticed that compound 5 is larger than compound 22. In addition, we have successfully synthesized multibenzo-fused [6]-Helicene 27. Finally, we investigated the basic photophysical and electrochemical properties of final products 5、27.
By the end, despite the final product 5 and 27 has successfully been prepared, separation of enantiomer is not ideal. Modifying the flow rate or ratio of mobile phase to improve the separation efficiency will be our primary goal in the future.
[1]. Little, M. S.; Yeates, S. G.; Alwattar, A. A.; Heard, K. W. J.; Raftery, J.; Edwards, A. C.; Parry, A. V. S.; Quayle, P. Eur. J. Org. Chem. 2017, 13, 1694-1703.
[2]. Dias, J. Handbook of polycyclic hydrocarbons. 1987.
[3]. Tönshoff, C.; Bettinger, H. F. Angew. Chem. Int. Ed. 2010, 49, 4125-4128.
[4]. Anthony, J. E. Chem. Rev. 2006, 106, 5028-5048.
[5]. Barlier, V. S.; Schlenker, C. W.; Chin, S. W.; Thompson, M. E. Chem. Commun. 2011, 47, 3754-3756.
[6]. Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2003, 5, 4245-4248.
[7]. Pal, S. K.; Setia, S.; Avinash, B. S.; Kumar, S. Liq. Cryst. 2013, 40, 1769-1816.
[8]. Rohr, U.; Kohl, C.; Müllen, K.; Craats, A.; Warman, J. J. Mater. Chem. 2001, 11, 1789-1799.
[9]. Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763-7768.
[10]. Lakhtakia, A. Society of Photo Optical. 1990.
[11]. Gingras, M.; Félix, G.; Peresutti, R. Chem. Soc. Rev. 2013, 42, 1007-1050.
[12]. Shi, L.; Liu, Z.; Dong, G.; Duan, L.; Qiu, Y.; Jia, J.; Guo, W.; Zhao, D.; Cui, D.; Tao, X. Chem. Eur. J. 2012, 18, 8092-8099.
[13]. Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.; Kamtonwong, S.; Sooksimuang, T. Synth. Met. 2010, 160, 1148-1152.
[14]. Storch, J.; Zadny, J.; Strasak, T.; Kubala, M.; Sykora, J.; Dusek, M.; Cirkva, V.; Matejka, P.; Krbal, M.; Vacek, J. Chem. Eur. J. 2015, 21, 2343-2347.
[15]. Martin, R.; Marchant, M.-J. Tetrahedron Lett. 1972, 13, 3707-3708.
[16]. Ruggles, E. L.; Deker, P. B.; Hondal, R. J. Tetrahedron 2009, 65, 1257-1267.
[17]. Jefferies, L. R.; Cook, S. P. Org. Lett. 2014, 16, 2026-2029.
[18]. Teplý, F.; Stará, I. G.; Starý, I.; Kollárovič, A.; Šaman, D.; Vyskočil, Š.; Fiedler, P. J. Org. Chem. 2003, 68, 5193-5197.
[19]. Lapouyade, R.; Manigand, C.; Nourmamode, A. Can. J. Chem. 1985, 63, 2192-2196.
[20]. Wang, F.; Tong, Z. RSC Adv. 2014, 4, 6314-6317.
[21]. Ishikawa, K.; Charles, H.; Griffin, G. Tetrahedron Lett. 1977, 18, 427-430.
[22]. Depken, C.; Kraetzschmar, F.; Breder, A. Org. Chem. 2016, 3, 314-318.
[23]. Little, M. S.; Yeates, S. G.; Alwattar, A. A.; Heard, K. W.; Raftery, J.; Edwards, A. C.; Parry, A. V.; Quayle, P. Eur. J. Org. Chem. 2017, 13, 1694-1703.
[24]. Heller, B.; Hapke, M.; Fischer, C.; Andronova, A.; Starý, I.; Stará, I. G. J. Organomet. Chem. 2013, 723, 98-102.
[25]. Šámal, M.; Chercheja, S.; Rybáček, J.; Vacek Chocholoušová, J.; Vacek, J.; Bednárová, L.; Šaman, D.; Stará, I. G.; Starý, I. J. Am. Chem. Soc. 2015, 137, 8469-8474.
[26]. Tintel, C.; Lugtenburg, J.; Amsterdam, G.; Erkelens, C.; Cornelisse, J. Recl. Trav. Chim. Pays Bas. 1983, 102, 228-231.
[27]. Hsieh, Y. C.; Wu, C. F.; Chen, Y. T.; Fang, C. T.; Wang, C. S.; Li, C. H.; Chen, L. Y.; Cheng, M. J.; Chueh, C. C.; Chou, P. T. J. Am. Chem. Soc. 2018, 140, 14357-14366.
[28]. Karras, M.; Holec, J.; Bednárová, L.; Pohl, R.; Schmidt, B.; Stará, I. G.; Starý, I. J. Org. Chem. 2018, 83, 5523-5538.
[29]. Ma, Y.; Song, C.; Jiang, W.; Wu, Q.; Wang, Y.; Liu, X.; Andrus, M. B. Org. Lett. 2003, 5, 3317-3319.
[30]. Dolbier, W. R.; Palmer, K. W. J. Org. Chem. 1993, 58, 7064-7069.
[31]. Ide, T.; Sakamoto, S.; Takeuchi, D.; Osakada, K.; Machida, S. J. Org. Chem. 2012, 77, 4837-4841.
[32]. He, W.; Fang, Z.; Tian, Q.; Shen, W.; Guo, K. Ind. Eng. Chem. RES. 2016, 55, 1373-1379.
[33]. Jeyaraman, R.; Murray, R. W. J. Am. Chem. Soc. 1984, 106, 2462-2463.