| 研究生: |
蘇昱帆 Su, Yuh-Fan |
|---|---|
| 論文名稱: |
二氧化鈦奈米纖維陣列與薄膜光電現象之研究 Study on the Photoelectrochemical Phenomena of TiO2 Film and Nanofiber Array |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 水熱法 、濺鍍法 、二氧化鈦 、光觸媒 、奈米纖維陣列 |
| 外文關鍵詞: | sputtering, photocatalyst, TiO2, nanofiber array, hydrothermal method |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光能利用率的提升一直是目前光觸媒研究最重要的課題,減少被光激發產生的電子電洞對再結合,是一種讓吸收的光能充分利用的方法。外加電壓可以非常有效地抑制電子和電洞再結合,為充分發揮外加電壓的效益,本研究首先探討光觸媒在外加電壓與沒有外加電壓的條件下,材料特性與光催化、光電催化活性的關係。為了進一步獲得更高光催化或光電催化活性的光觸媒,我們嘗試合成具有奈米纖維陣列結構的二氧化鈦薄膜,探討二氧化鈦奈米纖維陣列的合成條件與特性分析,並檢測其光催化與光電催化活性。
在第一部份的研究,以磁控反應性濺鍍法在ITO導電玻璃基材上製備二氧化鈦薄膜。改變濺鍍條件包括濺鍍功率、腔體總壓、氧氣分壓得到不同材料特性的二氧化鈦薄膜,並評估其光電流活性。
結果顯示薄膜厚度1.2 μm與顆粒尺寸50 nm得到最佳的光電流。當晶粒尺寸小於22 nm時,可觀察到量子尺寸效應造成的光學能隙藍位移。以濺鍍功率和腔體總壓建構的晶型結構相圖可顯示,其中除了描述銳鈦礦和金紅石的轉換,同時界定銳鈦礦(101)和(112)長晶優勢位向的轉換。(112)長晶優勢位向的銳鈦礦因為具有柱狀的結構,有利於電子的傳遞,因此其光電流大於(101)長晶優勢位向的銳鈦礦。
在第二部分的研究,以濺鍍法製備二氧化鈦薄膜,利用改變濺鍍條件,使不同特性的二氧化鈦薄膜沈積在鈦片上。選擇測定甲基橙的脫色速率,作為鑑定光催化與光電催化活性的標的。同時也量測光電流,以此和脫色速率比較,並且計算系統的光電流效率。
結果顯示濺鍍在鈦片上的二氧化鈦薄膜具有良好的晶體結構產生光催化活性,不需再經由鍛燒熱處理。其平均晶粒尺寸介於22到49 nm之間。銳鈦礦和金紅石晶型都存在製備的薄膜中。光學能隙介於3.1至3.3 eV。平帶電位主要介於-0.14到-0.29 V vs. Ag/AgCl。
甲基橙脫色反應僅發生在光電極槽(陽極)。光電流效率介於1.42到4.46%之間。二氧化鈦薄膜在沒有外加電壓的光催化甲基橙脫色速率較高的,在外加電壓的催化反應中,產生的光電流有較多作用於甲基橙脫色。連接至Pt電極,使脫色速率平均增加67%。外加電壓使脫色速率再增加127%。
對於光催化反應,材料特性包括高結晶度、高銳鈦礦含量、負的平帶電位可得到較高的脫色速率。但對於光電催化反應,銳鈦礦含量和平帶電位的影響不重要。薄膜電阻成為最主要影響脫色速率的因素。
第三部分研究嘗試開發一種二氧化鈦奈米纖維陣列的合成法。利用NaOH溶液與二氧化鈦粉末與鈦片反應,可在鈦片表面生成二氧化鈦奈米纖維陣列。此方法不需使用模版、在常壓下進行,為一簡單、快速、溫和的合成方法。使用2.5 M NaOH在常溫下即可進行合成反應。使用95℃的溶液,NaOH濃度僅需0.1 M。在10 M NaOH溶液與95℃的條件下,2 min的時間即可觀察到纖維的生成。鈦片表面生成的纖維直徑約15 nm,組成為二氧化鈦,包含銳鈦礦和金紅石晶型。
纖維的形成包括二氧化鈦的分解再重構的過程,因此原始二氧化鈦粉末的顆粒大小不影響纖維的型態。鹼液的濃度是使二氧化鈦分解的主要驅動力,對生成的纖維型態有明顯的影響。纖維結構在水熱反應後形成,後續的水洗與酸洗程序是為除去殘留的鈉離子,以提升光催化活性。
鍛燒前的奈米纖維陣列因為結晶度不佳,不具良好的光催化活性。鍛燒至550℃可增加其結晶度,並仍保留其纖維結構。和鍛燒至750℃擁有最佳結晶度但不具纖維結構的電極比較,纖維結構電極的光電流是非纖維結構電極光電流的四倍。對於光電催化活性,奈米纖維的沈積量有一最佳值,過長的反應時間因為纖維的交錯反而影響電子傳輸並使電阻上升,造成光電催化活性下降。對於光催化活性,沈積量增加使光催化活性增加並趨近一穩定值。
How to increase the efficiency of the photocatalytic process is an issue currently attracting attention. Reducing the recombination of electrons and holes, e.g. by applying a potential, is an effective way to increase the efficiency of photo-energy utilization. In order to maximize the function of the applied potential, we first investigated correlations between the material properties and the photocatalytic and photoelectrocatalytic activities of photcatalysts in the absence and presence of an applied potential. To obtain the best photocatalysts, i.e. those with the highest photocatalytic or photoelectrocatalytic activities, we attempted to synthesize a TiO2 thin film with a nanofiber array structure. The synthesis, characterization, and the photocatalytic and photoelectrocatalytic activities of the TiO2 nanofiber array were also explored.
In the first part, a systematic study of the photocurrent activity and the nanostructure of a TiO2 indium tin oxide (ITO) electrode prepared using reactive sputtering was carried out. Various TiO2 films were synthesized by controlling deposition times, sputtering powers, total pressures, and the mole percentage of oxygen used in reactive sputtering.
The results indicated that the optimal photocurrent was obtained at a thickness of approximately 1.2 μm with a mean particle size of approximately 50 nm. The quantum size effect (blue shift in the bandgap energy) was observed when the grain size was smaller than 22 nm. The preferred orientation of the anatase region for (101) and (112) was determined in the phase diagram defined by the total pressure and sputtering power. The (112)-preferred orientation anatase had a higher photocurrent than (101)-orientation anatase due to the (112)-orientation anatase having a more regular columnar structure that was beneficial to electron transfer.
In the second part, correlations between the photocatalytic and photoelectrocatalytic decolorization of methyl orange, using TiO2 thin films sputtered under various conditions, were made. TiO2 thin films with various characteristics were deposited onto a Ti plate using reactive sputtering. The rate of decolorization of methyl orange was monitored and used to evaluate the activity of photocatalytic and photoelectrocatalytic reactions in this work. In addition, the photocurrent was measured to compare the different methods used to evaluate the photoelectrocatalytic activity including the rate of decolorization and photocurrent density. The photocurrent efficiency of the photoelectrocatalytic decolorization of methyl orange was also evaluated.
The results indicated that the sputtered TiO2 thin films had good crystallinity even without calcination and their average grain sizes were in the range from 22 to 49 nm. Both anatase and rutile phases were found in the prepared films. The values of the bandgap energy were in the range from 3.1 to 3.3 eV. The flatband potential of the sputtered TiO2 film was in the range from -0.14 to -0.29 V vs. Ag/AgCl.
It was found that the decolorization of methyl orange only occurred on the anode of the TiO2/Ti electrode. The photocurrent efficiency was between 1.42 and 4.46%. TiO2 films had higher activities in photocatalytic reactions in the absence of an applied potential, and also had a higher selectivity for the decolorization of methyl orange in the presence of an applied potential. With the photocatalyst connected to a Pt plate, the average photocatalytic decolorization rate of methyl orange increased by 67%. The decolorization rate was further increased by 127% in the presence of an applied potential of 1 V vs. Ag/AgCl.
For the photocatalytic reaction, the materials with high crystallinity, high quantity of anatase, and more negative flatband potential gave a higher decolorization rate. For the photoelectrocatalytic reaction, the crystal phase was not important and the flatband potential effect was not affected when connected to Pt. However, the resistance of the film was the most important factor for determining the photoelectrocatalytic activity.
The third part details the development of a novel synthesis method for the preparation of a TiO2 nanofiber array. The TiO2 nanofiber array was formed on Ti foil by the reaction between Ti foil, TiO2 powder, and NaOH solution. This is an extremely easy and fast way to synthesize the nanofiber array under moderate conditions. No mode is required and it can be produced at normal pressures with only one step. The synthesis can be carried out in aqueous NaOH (2.5 M) at room temperature. If we use a higher temperature e.g. 95℃, the concentration of NaOH solution can be reduced to 0.1 M in a procedure lasting approximately 20 min. However, the nanofiber can be obtained after 2 min in a 10 M NaOH solution at 95℃. The fiber was 15 nm in diameter and composed of anatase and rutile TiO2.
The formation of the nanofiber was achieved by the decomposition and subsequent restructuring of TiO2 powder. The original particle size distribution of the TiO2 powder does not affect the morphology of the final nanofiber. The driving force causing the decomposition of the TiO2 is the concentration of the alkaline. The morphology of the nanofiber is strongly influenced by the concentration of the alkali. The nanofiber was formed immediately after the hydrothermal reaction. The follow-up procedures (e.g. rinsing with DI water and acid) serve to wash out the remaining Na+ ions. These remnants do not affect the morphology of the nanofiber but do decrease the photocatalytic activity of TiO2 nanofiber array.
The nanofiber has good crystallinity with high photocatalytic activity. The nanofiber structure was still maintained while the calcination temperature increased to 550℃. When the temperature further increased to 750℃, the nanofiber structure of the TiO2 disappeared although the crystallinity further improved. The nanofiber TiO2 with the calcination temperature at 550℃ has excellent photoelectrocatalytic activity, by a factor of 4, compared to that with the calcination temperature at 750℃. The amount of deposition of nanofiber array has an optimal value for photoelectrocatalytic activity. If this optimal value is surpassed, the photoelectrocatalytic activity of the nanofiber decreases due to the increased resistance of the transmission of the electrons. However, the accumulation of the nanofibers would increase the photocatalytic activity and reach a saturation point.
Anpo, M., Mihara, K. and Kubokawa, Y., “Photoinduced Methanol Conversion to Hydrocarbons on Supported MoO3 Catalysts,” J. Catal., 97, 272 (1986).
Al Ekabi, H. and Serpone, N., “Kinetic Studies in Heterogeneous Photocatalysis. 1. Photocatalytic Degradation of Chlorinated Phenols in Aerated Aqueous Solutions over TiO2 Supported on a Glass Matrix,” J. Phys. Chem., 92, 5726 (1988).
Amadelli, R., Maldotti, A., Bartocci, C. and Carassiti, V., “ESR Spin-Trapping Investigation of Azide Oxidation on CdS and ZnO Suspensions,” J. Phys. Chem., 93, 6448 (1989).
Alfano, O. M., Bahnemann, D., Cassano, A. E., Dillert, R. and Goslich, R., “Photocatalysis in water environments using artificial and solar light,” Catal. Today, 58, 199 (2000)
Bard, A. J. and Faulkner, L. R., Electrochemical Methods Fundamentals and Applications, chap. 14, Wiley and Sons, Inc., New York (1980).
Borgarello, E., Kiwi, J., Pelizzetti, E., Visca, M. and Gratzek, M., “Sustained Water Cleavage by Visible Light,” J. Am. Chem. Soc., 103, 6324 (1981).
Borgarello, E., Terzian, R., Serpone, N., Pelizzetti, E. and Barbeni, M., “Photocatalyzed Transformation of Cyanide to Thiocyanate by Rhodium-Loaded Cadmium Sulfide in Alkaline Aqueous Sulfide Media,” Inorg. Chem., 25, 2135 (1986).
Bockman, T. M. and Kochi, J. K., “Activation of Triiron Cluster by Electron Transfer. The Pronounced Modulation of ETC Catalysis by Bridging Ligands,” J. Amer. Chem. Soc., 109, 7255 (1987).
Blake, D. M., Webb, J., Turchi, C. and Magrine, K., “Kinetic and Mechanistic Overview of TiO2-photocatalyzed Oxidation Reactions in Aqueous Solution,” Sol. Energy Mater., 24, 584 (1991).
Bedja, I., Hotchandani, S. and Kamat, P. V., “Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2’-bipyridine) (2,2’-bipyridine-4,4’-dicarboxylic acid)ruthenium(II) Complex,” J. Phys. Chem., 98, 4133 (1994).
Bekbölet, M. and Balcioglu, I., “Photocatalytic Degradation Kinetics of Humic Acid in Aqueous TiO2 Dispersions: The Influence of Hydrogen Peroxide and Bicarbonate Ion,” Wat. Sci. Tech., 34, 73 (1996).
Butterfield, M., Christensen, P. A. and Howarth, C. R., “Applied Studies on Immobilized Titanium Dioxide Films as Catalysts for the Photoelectrochemical Detoxification of Water,” J. Appl. Electrochem., 27, 385 (1997).
Chapman, B., Glow Discharge Processes, John Wiley and Sons, New York (1980).
Chen, L. C. and Chou, T. C., “Photobleaching of Methyl Orange in Titanium Dioxide Suspended in Aqueous Solution,” J. Mol. Catal., 85, 201 (1993).
Chen, L. C. and Chou, T. C., “Kinetics of Photodecolorization of Methyl Orange Using Titanium Dioxide as Catalyst,” Ind. Eng. Chem. Res., 32, 1520 (1993).
Chen, L. C. and Chou, T. C., “Photodecolorization of Methyl Orange Using Silver Ion Modified TiO2 as Photocatalyst,” Ind. Eng. Chem. Res., 33, 1436 (1994).
Christensen, P. A., Curtis, T. P., Egerton, T. A., Kosa, S. A. M. and Tinlin, J. R., “Photoelectrocatalytic and photocatalytic disinfection of E-coli suspensions by titanium dioxide,” Appl. Catal. B-Environ., 41, 371 (2003).
Dimitrijevic, N. M., Li, S. and Gratzel, M., “Visible Light Induced Oxygen Evolution in Aqueous CdS Suspensions,” J. Amer. Chem. Soc., 106, 6565 (1984).
Domen, K., Kudo, A. and Onishi, T., “Mechanism of Photocatalytic Decomposition of Water into H2 and O2 over NiO-SrTiO3,” J. Catal., 102, 992 (1986).
Davis, P. A. and Huang, P. C., “A Kinetic Model Describing Photocatalytic Oxidation Using Illuminated Semiconductors,” Chemosphere, 26, 1119 (1993).
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semicoductor Electrode,” Nature, 238, 37 (1972).
Frank, S. N. and Bard, A. J., “Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders,” J. Phys. Chem., 81, 1484 (1977).
Finklea, H. O., in Finklea H. O. (Ed.), Semiconductor electrodes, p. 43-145, Elsevier, New York (1988).
Fitzmaurine, D. J. and Frei, H., “Transient Near-Infrared Spectroscopy of Visible Light Sensitized Oxidation of Iodine at Colloidal Tiyania,” Langmuir, 7, 1129 (1991).
Fox, M. A. and Dulay, M. T., “Heterogeneous Photocatalysis,” Chem. Rev., 93, 341 (1993).
Griffin, G. L. and Carlsin, T., “Photooxidation of Methanol Using V2O5 and MoO3/TiO2 Surface Oxide Monolayer Catalysts,” J. Phys. Chem., 90, 5896 (1986).
Gopodas, K. R. and Kamat, P. V., “Photochemistry on Surfaces. 4. Influence of Support Material in the Photochemistry of an Adsorbed Dye,” J. Phys. Chem., 93, 6428 (1989).
Gerfin, T., Grätzel, M. and Walder, L., Molecular and Supra-molecular Surface Modification of Nanocrystalline TiO2 Films: Charge-Separating and Charge-Injecting Devices, Progress in Inorganic Chemistry, Vol. 44, Series edited by Karlin, K. D., Molecular Level Artificial Photosynthetic Materials, Special Volume edited by Meyer, G. J., pp. 345-393, John Wiley and Sons, Inc., New York (1997).
Guerin, D. and Shah, S. I., “Reactive-sputtering of titanium oxide thin films,” J. Vac. Sci. Technol. A-Vac. Surf. Films, 15, 712 (1997).
Gómez, M., Magnusson, E., Olsson, E., Hagfeldt, A., Lindquis, S.-E.t and Granqvist, C. G., “Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness,” Sol. Energy Mater. Sol. Cells, 62, 259 (2000).
Harten, H. U., “The Semiconductor/Electrolyte Interface: Potentials, Charges and Carriers,” Helv. Chim. Acta., 1255 (1972).
Harriman, A. and Thomas, J. M., “A New Family of Photocatalysts Based on Bi2O3,” J. Solid. State. Chem., 72, 126 (1988).
Henglein, A., “Small-Particle Research: Physicochemical properties of Extremely Small Colloidal Metal and Semiconductor Particles,” Chem. Rev., 89, 1861 (1989).
Hori, Y., Bandoh, A. and Nakatsu, A., “Electrochemical Investigation of Photocatalytic Oxidation of NO2- at TiO2 (Anatase) in the Presence of O2,” J. Electrochem. Soc., 137, 1155 (1990).
Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., 95, 69 (1995).
Hagfeldt, A. and Gratzel, M., “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev., 95, 49 (1995).
Hagfeldt, A., Lindström, H., Södergren, S. and Lindquist, S. E., “Photoelectrochemical Studies of Colloidal TiO2 Films: The Effect of Oxygen Studied by Photocurrent Transients,” J. Electroanal. Chem., 381, 39 (1995).
Hidaka, H., Nagaoka, H., Nohara, K., Shimura, T., Horikoshi, S., Zhao, J. and Serpone, N., “A Mechanistic Study of the Photoelectrochemical Oxidation of Organic Compounds on a TiO2/TCO Particulate Film Electrode Assembly,” J. Photochem. Photobiol. A. Chem., 98, 73 (1996).
Ichikawa, S. and Doi, R., “Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics,” Thin Solid Films, 292, 130 (1997).
Jaeger, C. D. and Bard, A. J., “Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate Systems,” J. Phys. Chem., 83, 3146 (1979).
Jaffrezic Renault, N., Pichat, P., Foissy, A. and Mercier, R., “Effect of Deposited Pt Particles on the Surface Charge of TiO2 Aqueous Suspensions by Potentiometry, Electrophoreses, and Labeled Ion Adsorption,” J. Phys. Chem., 90, 2733 (1986).
King, A. D., King, R. B. and Yang, D. B., “Homogeneous Catalysis of the Water Gas Shift Reaction with the Use of Group 6 Transition Metal Carbonyls: Cr(CO)6, MO(CO)6, and W(CO)6,” J. Amer. Chem. Soc., 103, 2699 (1981).
Kormann, C., Bahnemann, D. W. and Hoffmann, M. R., “Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO2 Suspensions,” Environ. Sci. Technol., 25, 494 (1991).
Kamat, P. V., “Photoelectrochemistry of Semiconductor ZnO Particulate Films,” J. Electrochem. Soc., 139, 1630 (1992).
Ku, Y. and Hsieh, C. B., “Photocatalytic Decomposition of 2,4- Dichlorophenol in Aqueous TiO2 Suspensions,” Wat. Res., 26, 1451 (1992).
Kavan, L., O’Regan, B., Kay, A. and Grätzel, M., “Preparation of TiO2 (Anatase) Films on Electrodes by Anodic Oxidative Hydrolysis of TiCl3,” J. Electroanal. Chem., 346, 291 (1993).
Kim, D. H. and Anderson, M. A., “Photoelectrocatalytic Degradation of Formic Acid Using a Porous TiO2 Thin-film Electrode,” Environ. Sci. Technol., 28, 479 (1994).
Kay, A. and Gratzel, M., “Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder,” Sol. Energy Materials and Solar Cells, 44, 99 (1996).
Karn, R. K. and Srivastava, O. N., “On the Systhesis of Nanostructured TiO2 Anatase Phase and the Development of the Photoelectrochemical Solar Cell,” Int. J. Hydrogen Energy, 24, 27 (1999).
Khan, S. U. M., Al-Shahry, M. and Ingler, W. B., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, 297, 2243 (2002).
Kim, B., Byun, D., Lee, J. K. and Park, D., “Structural analysis on photocatalytic efficiency of TiO2 by chemical vapor deposition,” Jpn. J. Appl. Phys., 41, 222 (2002).
Lanine, R. M. and Crawford, E., “Homogeneous Catalysis of the Water Gas Shift Reaction,” J. Mol. Catal., 44, 357 (1988).
Lu, M. C., Roam, G. D., Chen, J. N. and Huang, C. P., “Photocatalytic Mineralization of Toxic Chemicals with Illuminated TiO2,” Chem. Eng. Comm., 139, 1 (1995).
Lepore, G. P., Persand, L. and Langford, C. H., “Supporting Titanium Dioxide Photocatalysts on Silica Gel and Hydrophobically Modified Silica Gel,” J. Photochem. Photobiol. A. Chem., 98, 103 (1996).
Liu, H., Cheng, S. A., Wu, M., Wu, H. J., Zhang, J. Q., Li, W. H. and Cao, C. N., “Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation,” J. Phys. Chem. A, 104, 7016 (2000).
Luo, J. and Hepel, M., “Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes,” Electrochim. Acta, 46, 2913 (2001).
Lin, Y., Wu, G. S., Yuan, X. Y., Xie, T. and Zhang, L. D., “Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes,” J. Phys.-Condes. Matter, 15, 2917 (2003).
Morrison, R., Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum. Press., New York (1980).
Miller, M. E. and Grant, E. R., “Gas-Phase Organometallic Catalysis: Kinetics and Mechanism of the Hydrogenation of Ethylene by Fe(CO)3(C2H4)2,” J. Amer. Chem. Soc., 109, 795 (1987).
Matthews, R. W., “Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxide,” J. Phys. Chem., 91, 3328 (1987).
Matthews, R. W., “Solar-electric Water Purification Using Photocatalytic Oxidation with TiO2 as a Stationary Phase,” Sol. Energy, 8, 405 (1987).
Matthews, R. W., “Carbon Dioxide Formation from Organic Solutes In Aqueous Suspensions of Ultraviolet-Irradiated TiO2. Effect of Solute Concentration,” Aust. J. Chem., 40, 667 (1987).
Maruthamuthu, P., Ashokkumar, M. and Venkatasubramanian, L., “Visible Light Assisted heterogeneous Catalysis. Decomposition of Peroxomonosulfate over Doped and Undoped WO3 Dispersions in Aqueous Medium,” Bull. Chem. Soc. Jpn., 61, 4137 (1988).
Matthews, R. W., “Purification of Water with Near-UV Illuminated Suspensions of Titanium Dioxide,” Wat. Res., 24, 653 (1990).
Minero, C., Catozzo, F. and Pelizzetti, E., “Role of Adsorption in Photocatalyzed Reactions of Organic Molecules in Aqueous TiO2 Suspensions,” Langmuir, 8, 481 (1992).
Mills, A., Davies, R. H. and Worsley, D., “Water Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev., 417 (1993).
Milis, A., Peral, J. and Domènech, X., “Heterogeneous Photocatalytic Oxidation of Nitrite over Iron-Doped TiO2 Samples,” J. Mol. Catal., 87, 67 (1994).
Mengyue, Z., Shifu, C. and Yaowa, T., “Photocatalytic Degradation of Organophosphorus Pesticides Using Thin Films of TiO2,” J. Chem. Tech. Biotechnol., 64, 339 (1995).
Martin, N., Rousselot, C., Savall, C. and Palmino, F., “Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering,” Thin Solid Films, 287, 154 (1996).
Mills, A. and Hunte, S. L., “An Overview of Semiconductor Photocatalysis,” J. Photochem. Photobiol. A. Chem., 108, 1 (1997).
Ngyyen, T. and Ollis, D. F., “Complete Heterogeneously Photocatalyzed Transformation of 1,1-and 1,2-Dibrromoethane to CO2 and HBr,” J. Phys. Chem., 88, 3386 (1984).
Nasr, C., Vinodgopal, K., Fisher, L., Hotchandani, S., Chattopadhyay, A. K. and Kamat, P. V., “Environmental Photochemistry on Semiconductor Surfaces. Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO2 Nanoparticles,” J. phys. Chem., 100, 8436 (1996).
Nan, C. W., Tschope, A., Holten, S., Kliem, H. and Birringer, R., “Grain size-dependent electrical properties of nanocrystalline ZnO,” J. Appl. Phys., 85, 7735 (1999).
Oishi, S., “Photoinduced Catalytic Reaction of Hydridotetrakis (Diethyl phenylphosphonite) Cobalt(I),” J. Mol. Catal., 40, 289 (1987).
O’Regan, B. and Gratzel, M., “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films,” Nature, 353, 737 (1991).
Ohring, M., The Materials Science of Thin Films, Academic Press, UK (1992).
Okimura, K., Maeda, N. and Shibata, A., “Characteristics of rutile TiO2 films prepared by rf magnetron sputtering at a low temperature,” Thin Solid Films, 282, 427 (1996).
Ohko, Y., Hashimoto, K. and Fujishima, A., “Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illuination on Titanium Dioxide Thin Films,” J. Phys. Chem. A, 101, 8057 (1997).
Ooka, C., Akita, S., Ohashi, Y., Horiuchi, T., Suzuki, K., Komai, S., Yoshida, H. and Hattori, T., “Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity,” J. Mater. Chem., 9, 2943 (1999).
Peral, J., Casade, J. and Domenech, X., “Competitive Processes in Photocatalysis Phenol-Sulphide and Phenol-Cyanide Competitive Photooxidation over ZnO,” Electrochimica Acta., 34, 1335 (1989).
Prairle, M. R., Evans, L. R., Stange, B. M. and Martinez, S. L., “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol., 27, 1776 (1993).
Peill, N. J. and Hoffmann, M. R., “Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-chlorophenol,” Environ. Sci. Technol., 29, 2974 (1995).
Pirkanniemi, K. and Sillanpaa, M., “Heterogeneous water phase catalysis as an environmental application: a review,” Chemosphere, 48, 1047 (2002)
Rossnagel, S. M., Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982).
Rehorek, D. and Hemming, H. C., “Spin Trapping Photochemistry of Coordination Compounds,” J. Chem., 60, 1565 (1982).
Rajeshwar, K., “Photoelectrochemistry and the Environment,” J. Appl. Electrochem., 25, 1067 (1995).
Rideh, L., Ronze, W. D. and Zoulalian, A., “Photocatalytic Degradation of 2- Chlorophenol in TiO2 Aqueous Suspension: Modeling of Reaction Rate,” Ind. Eng. Chem. Res., 36, 4712 (1997).
Rodríguez, J., Gómez, M., Lu, J., Olsson, E. and Granqvist, C. G., “Reactively sputter-deposited titanium oxide coatings with parallel penniform microstructure,” Adv. Mater., 12, 341 (2000).
Rajeshwar, K., de Tacconi, N. R. and Chenthamarakshan, C. R., “Semiconductor-based composite materials: Preparation, properties, and performance,” Chem. Mater., 13, 2765 (2001).
Rachel, A., Subrahmanyam, M. and Boule, P., “Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids,” Appl. Catal. B-Environ., 37, 301 (2002).
Rothschild, A., Komem, Y., Levakov, A., Ashkenasy, N. and Shapira, Y., “Electronic and transport properties of reduced and oxidized nanocrystalline TiO2 films,” Appl. Phys. Lett., 82, 574 (2003).
Summers, D. P., Luong, J. C. and Wrighton, M. S., “A New Mechanism for Photosubstitution of Organometallic Complexes. Generation of Substitutional Labile Oxidation States by Excited State Electron Transfer in the Presence of Ligands,” J. Amer. Chem. Soc., 103, 5238 (1981).
Sskata, T. and Kawai, T., Energy Resource Through Photochemistry and photocatalysis, Gratzel, M. Ed. Academic press, New York (1983).
Shimamura, Y., Misawq, H., Oguchi, T., Kanno, T., Sakuragi, H. and Tokumaru, K., “Titanium Dioxide Photocatalyzed Oxidation of Atomatic Hydrocarbons: The Role of Water and Oxygen to Induce Aromatic Hydroxylation,” Chem. Lett., 1691 (1983).
Schiavello, M., Photoelectrochemistry, Photocatalysis and Photoreactors (Fundamentals and Developments), NATO ASI Series (1984).
Sze, S. M., Semiconductor Devices, Physics and Technology, chap. 1, John Wiley and Sons, Inc., New York (1985).
Sabate, J., Anderson, M. A., Kikkawa, H., Edwards, M. and Hill Jr, C. G., “A Kinetic Study of Photocatalytic Degradation of 3-Chlorosalicylic Acid over TiO2 Membranes Supported on Glass,” J. Catal., 127, 167 (1991).
Sayana, K. and Arakawa, H., “Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 catalyst,” J. Phys. Chem., 97, 531 (1993).
Sze, S. M., Semiconductor Sensors, John Wiley and Sons, New York (1994).
Serpone, N., “Brief Introductory Remarks on Heterogeneous Photocatalysis,” Sol. Energy Material and Sol. Cells, 38, 369 (1995).
Shin, E. M., Senthurchilvan, R., Munoz, J., Basak, S., Rajechwar, K., Benglas, S. G. and Howell, B. C., “Photolytic and Photocatalytic Destruction of Formaldehyde in Aqueous Media,” J. Electrochem. Soc., 143, 1562 (1996).
Sun, C. C. and Chou, T. C., “Kinetics and mechanism of photoelectrochemical oxidation of nitrite ion by using the rutile form of a TiO2/Ti photoelectrode with high electric field enhancement,” Ind. Eng. Chem. Res., 37, 4207 (1998).
Shiyaovskays, I. and Hepel, M., “Bicomponent WO3/TiO2 Films as Photoelectrodes,” J. Electrochem. Soc., 146, 243 (1999).
Sun, C. C. and Chou, T. C., “Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO2/Ti electrode,” J. Mol. Catal. A-Chem., 151, 133 (2000).
Salem, I., “Recent studies on the catalytic activity of titanium, zirconium, and hafnium oxides,” Catal. Rev.-Sci. Eng., 45, 205 (2003)
Thornton, J. A., “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of the Thick Sputtered Coatings,” J. Vac. Sci. Tehnol., 11, 666 (1974).
Tanaka, K., Harada, K. and Murata, S., “Photocatalytic Deposition of Metal Ions onto TiO2 Powder,” Sol. Energy, 36, 159 (1986).
Truch, R. and Ollis, D. F., “Photocatalytic Degradation of Organic Water Contaminants: Mechanism Involving Hydroxyl Radical Attack,” J. Catal., 122, 178 (1990).
Temmakone, K., Senadeera, S. and Priyadharshana, A., “TiO2 Catalysed Photo-oxidation of Water in the Presence of Methylene Blue,” Sol. Energy Mater. and Sol. Cells, 29, 109 (1993).
Trillas, M., Peral, J. and Domènech, X., “Photo-Oxidation of Phenoxyacetic Acid by TiO2-illuminated Catalyst,” Appl. Catal. B: Environ., 3, 45 (1993).
Tada, H. and Honda, H., “Photocatalytic Activity of TiO2 Film Coated on Internal Lightguide,” J. Electrochem. Soc., 142, 3438 (1995).
Torimoto, T., Fox, R. J. and Fox, M. A., “Photoelectrochemical Doping of TiO2 particles and the Effect of Charge Carrier Density on the Photocatalytic Activity of Microporous Semiconductor Electrode Films,” J. Electrochem. Soc., 143, 3712 (1996).
Theurich, J., Lindner, M. and Bahnemann, D. W., “Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study,” Ind. Eng. Chem. Res., 12, 6368 (1996).
Tokita, S., Tanaka, N. and Saitoh H., “High-rate epitaxy of anatase films by atmospheric chemical vapor deposition,” J. Appl. Phys., 39, L169 (2000).
Tryk, D. A., Fujishima, A. and Honda, K., “Recent topics in photoelectrochemistry: achievements and future prospects,” Electrochim. Acta, 45, 2363 (2000)
Takeda, S., Suzuki, S., Odaka, H. and Hosono, H., “Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering,” Thin Solid Films, 392, 338 (2001).
Takagi, K., Makimoto, T., Hiraiwa, H. and Negishi, T., “Photocatalytic, antifogging mirror,” J. Vac. Sci. Technol. A-Vac. Surf. Films, 19, 2931 (2001).
Vlachopoulous, N., Liska, P., Augustynski, J. and Gratzel, M., “Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films,” J. Am. Chem. Soc., 110, 1216 (1988).
Van Vlack, L. H., Elements of Materials Science and Engineering, chap. 11, Addison-Wesley Publishing Company (1989).
Vinodgopal, K., Hotchandani, S. and Kamat, P. V., “Electrochemically Assisted Photocatalysis. TiO2 particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorophenol,” J. Phys. Chem., 97, 9040 (1993).
Vinodgopal, K. and Kamat, P. V., “Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films,” Environ. Sci. Technol., 29, 841 (1995).
Vinodgopal, K., Wynkoop, D. and Kamat, P. V., “Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light,” Environ. Sci. Technol., 30, 1660 (1996).
Vorontsov, A. V., Stoyanova, I. V., Kozlov, D. V., Simagina, V. I. and Savinov, E. N., “Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide,” J. Catal., 189, 360 (2000).
Weiller, B. H., Liu, J. P. and Grant, E. R., “Kinetics of the Cr(CO)6 and W(CO)6 Catalyzed Water Gas Shift Reaction: Photoinitiated Formate Decomposition as a Probe of the Catalytic Cycle,” J. Amer. Chem. Soc., 107, 1595 (1985).
Westwood, W. D., Handbook of Plasma processing Technology, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1990).
Wei, T. Y. and Wan, C. C., “Heterogeneous Photocatalytic Oxidation of Phenol with Titanium Dioxide Powders,” Ind. Eng. Chem. Res., 30, 1293 (1991).
Watanabe, A. and Imai, Y., “KrF laser CVD of titanium oxide from titanium tetraisopropoxide,” Thin Solid Films, 348, 63 (1999).
Yoneyama, H., Yamaahita, Y. and Tamura, H., “Heterogeneous Photocatalytic Reaction of Dichromate on n-type Semiconductor Catalysts,” Nature, 282, 817 (1979).
Yoko, T., Hu, L., Kozuka, H. and Sakka, S., “Photoelectrochemical Properties of TiO2 Coating Films Prepared using Different Solvents by the Sol-gel Method,” Thin Solid Films, 283, 188 (1996).
Yasumori, A., Shinoda, H., Kameshima, Y., Hayashi, S. and Okada, K., “Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods,” J. Mater. Chem., 11, 1253 (2001).
Zafra, A., Garcia, J., Milis, A. and Domènech, X., “Kinetics of the Catalytic Oxidation of Nitrite over Illuminated Aqueous Suspensions of TiO2,” J. Mol. Catal., 70, 343 (1991).
Zhou, M., Lin, W. Y., De Tacconi, N. R. and Rajeshwar, K., “Metal/semiconductro Electrocomposite Photoelectrodes: Behavior of Ni/TiO2 Photoanodes and Comparison of Photoactivity of Anatase and Rutile Modifications,” J. Electroanal. Chem., 402, 221 (1996).
Zhao, G., Kozuka, H. and Yoko, T., “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-gel Method,” Sol. Energy Materials and Solar Cells, 46, 219 (1997).
孫志誠,利用光電化學技術氧化亞硝酸根離子之研究,國立成功大學化學工程學系博士論文(1999)。
陳龍泉,利用二氧化鈦及其修飾光觸媒光分解甲基橙,國立成功大學化學工程學系博士論文(1993)。
藤嵨昭、相澤益男及井上徹著,陳震及姚建年譯,蔡生民校,電化學測定方法,北京大學出版社,第366頁(1995)
校內:2015-10-12公開