簡易檢索 / 詳目顯示

研究生: 劉育昇
Liu, Yu-Sheng
論文名稱: 單一高分子鏈因外加電場極化作用所致之構象轉變
Conformational transitions of a single polymer chain due to field induced polarization
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 絨球-小珠轉變誘導電偶極鏈的拉伸/壓縮作用微流變學
外文關鍵詞: coil-globule transition, induced dipole moment, chain stretch/compression, microrheology
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解高分子的型態對於生物技術中的許多面相有一定的重要性,譬如:處於膨鬆態的DNA較好與其他的分子配體或探針產生鍵結;相反地,緊縮態的DNA則較有利於基因傳遞。由於許多應用常在電場下進行,本文探討單一高分子鏈受外加電場極化作用下的構型變化。
    在第二章中,我先從還未施加電場的高分子鏈行為開始探討。分析的依據是從經典的Flory-deGennes理論,本章重現了這一理論的結果,並提供單一高分子鏈的絨球-小珠轉變(Coil-Globule Transition, CGT)的一些基本特性。根據此理論,高分子鏈可為蓬鬆絨球或緊縮小珠,取決於溶劑的性質並反映於第二維里係數上。在優良溶劑中,第二維里係數大於零,單體與單體間彼此排斥,鏈表現得像一蓬鬆絨球,其絨球半徑(R)正比於鏈長(N)的3/5次方。相反的,在不良溶劑中,第二維里係數小於零,鏈因單體與單體間的吸引力而傾向收縮,導致R正比N的1/3次方。我還建立相圖,讓我可以知道絨球態、小珠態及共存時的條件。
    根據第二章的結果,在第三章我延伸Flory-deGennes理論來檢視高分子鏈如何因AC電場而產生的極化作用來改變鏈的構型。我發現這電場極化作用足以拉伸或壓縮高分子鏈,取決於誘導電偶極的方向與強度。與靜態無電場作用下的經典絨球-小珠轉變(CGT)相比,所致的鏈構型變化可呈現出完全不同的表徵。結果表明:拉伸高分子鏈所需的電場強度會隨鏈長的-0.8至-0.75次方變化;若鏈所承受的是壓縮作用,處於膨鬆絨球態的高分子鏈反而會表現得像無電場作用時的緊縮小珠態。
    在第四章中,我藉由微流變學的粒子追蹤來決定聚苯乙烯磺酸鈉在去離子水及lambda DNA在緩衝液,還未施加電場時的水力半徑(Rh)。實驗中,我使用微米等級的螢光粒子當追蹤物來決定均方位移(MSD),再藉由Stoke-Einstein決定高分子溶液的黏度並使用Einstein-Batchelor方程式得出Rh。
    在第五章中,我檢驗AC交流電場對第四章中的NaPSS和lambda DNA水力半徑的影響。首先先建立一會產生均勻電場的裝置,為了是確定鏈的壓縮及拉伸來自誘導電偶極而非介電泳(DEP)及交流電滲流(ACEO)。我發現NaPSS在20 Vpp及頻率為100-1000000 Hz的AC電場下似乎會減小它的尺寸,這表明NaPSS可能發生壓縮。然而,對lambda DNA而言,在上述電場的情況,鏈的尺寸似乎沒有顯著的變化。最後,我討論實驗和理論之間的差異以及可能影響實驗的問題。
    在第六章中,我將裝置改為陣列式的微電極,這通常使得電場不均勻。在這種情況下,我研究lambda DNA(被yoyo-1標記)受交流電荷動力學如DEP和ACEO的影響。我使用不同的AC頻率並觀察到下列現象。當頻率大於1 MHz,些微lambda DNA被捕捉在相鄰電極對之間的較寬區域,這可能是由於負DEP導致。當頻率等於10 kHz,有大量的lambda DNA被捕捉於電極間的空隙中。此外,這些lambda DNA似乎也被延伸了,這觀察結果可能來自正DEP。然而,當我將頻率降低到100 Hz時,因為lambda DNA被ACEO帶走了,我發現上述捕獲現象消失了。儘管如此,在電極角落還是有捕捉一些lambda DNA。
    本研究工作演示使用電場控制高分子構型的方法,從應用角度來看,也許可用於在奈米尺度下主動調控生物分子的活性。

    Understanding conformational changes of a polymer chain is important to many aspects in biotechnology. As many applications are conducted under the actions of external electric fields, in this thesis I explore impacts of electric fields to investigate how a polymer chain changes its conformation due to polarization effects induced by electric fields. I begin by examining how a polymer chain behaves without electric fields. This is essentially described by the classical Flory-deGennes theory. According to this theory, a polymer chain can be either swollen coil or compact globule, depending on the solvent quality. Building on the results, I extend the Flory-deGennes theory to examine how a polymer chain changes its conformational state due to polarization effects generated by AC fields. I find that polarization effects can either stretch or compress a polymer chain, depending on the orientation and strength of an induced dipole moment. The results show that the critical electric field needed to stretch a polymer chain varies as the -0.8~-0.75 power of the chain length. On the contrary, if compression occurs to a polymer chain, even though the chain is immersed in a good solvent and situated at a swollen coiled state, it could behave like a compact globule, similar to that in a poor solvent without fields. My experimental results from microrheological experiments indicate that polystyrene sulfonate (NaPSS) in deionized water seems compressed at high frequency in AC electric fields. Tuning the conformation of a polymer chain with electric fields might provide an active mean for regulating the activity of a biomolecule at the nanoscale.

    摘要 i Abstract ix 誌謝 xii 圖目錄 xvi 表目錄 xxi 符號說明 xxii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 絨球-小珠相轉變 10 2.1 高分子鏈自由能關係式 10 2.2絨球-小珠相轉變 12 第三章 單一高分子鏈因外加電場極化作用所致的拉伸、壓縮 20 3.1 極化作用下鏈的自由能關係式 20 3.2 於拉伸作用下高分子鏈的構型表徵 21 3.3 於壓縮作用下高分子鏈的構型表徵 24 第四章 應用微流變測高分子 33 4.1微流變學(microrheology)原理 33 4.2實驗工作溶液及裝置 34 4.2.1 NaPSS+去離子水的工作溶液和配置方法 34 4.2.2 lambda-DNA+緩衝溶液(Buffer solution)的工作溶液和配置方法 36 4.3實驗步驟及軟體操作 36 4.3.1 實驗步驟 36 4.3.2 軟體操作 36 4.4 實驗結果 39 4.4.1 水黏度測試 39 4.4.2 NaPSS+去離子水、lambda-DNA+緩衝液的實驗結果 40 4.5 奧士華(Ostwald)黏度計 41 第五章 均勻電場下的高分子鏈 51 5.1 實驗裝置、藥品、實驗步驟 51 5.1.1 如何建立均勻電場? 51 5.1.2 實驗裝置、藥品 51 5.1.3 實驗步驟 52 5.2 實驗結果討論 53 5.2.1 高頻下流動原因探討 53 5.2.2 頻率對高分子鏈拉伸、壓縮影響 54 5.3 極化作用對粒子運動影響 57 第六章 非均勻電場下高分子鏈 62 6.1 實驗裝置的電場、電位分佈模擬 62 6.2 基本原理 64 6.2.1 介電泳(Dielectrophoresis, DEP) 64 6.2.2 交流電滲流(AC Electro-osmosis, ACEO) 65 6.3 λ-DNA掃頻 66 6.3.1 工作溶液 67 6.3.2 實驗步驟 67 6.4 實驗結果討論 68 第七章 含奈米氣泡去離子水黏度量測 75 7.1 奈米氣泡簡介與文獻回顧 75 7.2 使用微流變學及奧士華黏度計量測含奈米氣泡的去離子水黏度 76 第八章 結論與未來工作 80 參考文獻 82 附錄A Matlab程式 85 A.1可求出同時存在絨球態與小珠態的B、無因次ν3的程式 85 A.2 一程式可求出極化作用內能的強度的臨界值與鏈長的關係。 85 A.3 求出粒子均方位移的程式 86 附錄B 微電極電位分佈推導 92

    [1]Brazel, C.S. and Rosen, S.L. 2012 Fundamental principles of polymeric materials(3rd edition). John Wiley and Sons.
    [2]Serhatli, E., Serhatli, M., Baysal, B.M. and Karasz, F.K. 2002 Coil-globule transition studies of sodium poly(styrene sulfonate) by dynamic light scattering. Polymer 43, 5439–5445.
    [3]Wang, S. and Zhu, Y 2012 Manipulating single annealed polyelectrolyte under alternating current electric fields: collapse versus accumulation. Biomicrofluidics 6, 24116–2411612.
    [4]Huang, C-H, Li, Y-C, Yeh, Y-Q and Wei, H-H 2014 Probing conformational transitions of polymer chains by microrheology. Polymer 55, 3168–3177.
    [5]Jan, J-S and Breedveld, V. 2008 Microrheological study of polyelectrolyte collapse and reexpansion in the presence of multivalent counterions. Macromolecules 41, 6517–6522.
    [6]Tuukkanen, S., Toppari, J.J., Kuzyk, A., Hirviniemi, L., Hytonen, V.P., Ihalainen, T. and To1rma P. 2008 Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Letters 6, 1339–1343.
    [7]Kaji, N., Tezuka, Y., Takamura, Y., Ueda, M., Nishimoto, T., Nishimoto, H., Horiike, Y. and Baba,Y. 2004 Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal. Chem 76, 15–22.
    [8]Skoog, D.A., Holler, F.J. and Crouch, S.R. 2006 Principles of instrumental analysis(6th edition). Brooks Cole.
    [9]Atkins, P. and Paula, J.D. 2014 Physical chemistry(10th edition). Oxford University Press.
    [10]De Gennes, P.G. 1979 Scaling concepts in polymer physics. Cornell University Press.
    [11]Rubinstein, M and Colby, R.H. 2003 Polymer physics. Oxford University Press.
    [12]Morgan, H. and Green, N.G. 2003 AC Electrokinetic: colloids and nanoparticles. Research Studies Press.
    [13]Tester, J.W. and Modell, M. 1996 Thermodynamics and its applications(3rd edition). Prentice Hall.
    [14]Neamen, D.A. 2011 Semiconductor physics and devices(4th edition). McGraw-Hill.
    [15]Green, N.G. and Morgan, H. 1999 Dielectrophoresis of submicrometer latex spheres.1.experimental results.J. Phys.Chem.B.103,41–50.
    [16]Sperling, L.H. 2005 Introduction to physical polymer science(4th edition). John Wiley and Sons.
    [17]Ying, Q. and Chu, B. 1987 Overlap concentration of macromolecules in solution. Macromolecules. 20, 362–366.
    [18]Breedveld, V. and Pine, D.J. 2003 Microrheology as a tool for high-throughput screening. Journal of Materials Science. 38, 4461–4470.
    [19]Furst, E.M. 2015 Particle tracking with Matlab. Retrieved from http://site.physics.georgetown.edu/matlab/
    [20]Deen, W.M. 2011 Analysis of transport phenomena(2nd edition). Oxford University Press.
    [21]Bird, R.B., Stewart, W.E. and Lightfoot, E.N. 2006 Transport phenomena(revised 2nd edition). John Wiley and Sons.
    [22]Takahashi, Y., Matsumoto, N., Iio, S, Kondo, H. and Noda, I. 1998 Concentration dependence of radius of gyration of sodium poly(styrene sulfonate) over a wide range of concentration studied by small-angle neutron scattering. Langmuir. 15, 4120–4122.
    [23]Tran, P., Alavi, B. and Gruner, G. 1999 Charge transport along the lambda DNA double helix. Physical Review Letters. 85, 7–14.
    [24]Ramos, A., Morgan, H., Green, N.G., and Castellanos, A. 1998 Ac electrokinetics: a review of forces in microelectrode structures. Journal of Physics D:Applied Physics. 31, 2338–2353.
    [25]Kirby, B.J. 2013 Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press.
    [26]Zhang, H., Kumar, A. and Scales, P.J. 2011 Effects of solvency and interfacial nanobubbles on surface forces and bubble attachment at solid surfaces. Langmuir. 27, 2481–2491.
    [27]Taylor, G.I. 1932 The viscosity of a fluid containing small drops of another fluid. Proceedings of the Royal Society of London A. 138, 41–48.
    [28]魏憲鴻 2016 從凡德瓦到德熱納:探索宏觀及分子相變的驚奇之旅,成大研發快訊,第三十卷,第九期.
    [29]林聖翔 2010 應用粒子追蹤之微流變技術探討單一聚電解質分子鏈之構象變化與膠體交互作用,國立成功大學,碩士論文.
    [30]陳信龍 2011 膠體粒子交互作用與單一高分子鏈構型變化之偵測與診斷,國立成功大學,碩士論文.
    [31]黃智新 2012 以微流變技術探討單一高分子鏈的溶脹-緊縮轉變,國立成功大學,碩士論文.
    [32]洪維恩 2005 MatLab 7程式設計 旗標出版股份有限公司.
    [33]梁紫涵 2017 整合DNA拉伸及交流電荷動力學作用製作快速且高靈敏度的FRET分子感測器,國立成功大學,碩士論文.
    [34]陳易靖 2017 以電荷動力學實現快速且高靈敏度的FRET分子感測,國立成功大學,碩士論文.

    下載圖示 校內:2023-07-30公開
    校外:2023-07-30公開
    QR CODE