簡易檢索 / 詳目顯示

研究生: 廖聖民
Liao, Hseng-Ming
論文名稱: 聲化學合成次微米鎵粒子基漿料及其在電子連結之應用
Sonochemical synthesis of submicron Ga particle-based pastes and their applications in electronic interconnection
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 高功率元件封裝Cu對Cu接合聲化學合成法次微米Ga粒子漿料轉移製程
外文關鍵詞: Power electronics packging, Cu-to-Cu interconnection, Sonochemistry, Submicron Ga particles, Paste transferring
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著摩爾定律即將走向極限,人們開始轉向「超越摩爾定律」的概念,不單純以提高單位體積內電晶體密度為目標,而是提升產品中各元件的效能,即相同尺寸的元件能夠提供使用者更佳的效能。此外,除了消費性電子產品的市場外,近年加速發展幾個重要的科技如5G通訊、無人機、物聯網、車聯網、人工智慧、電動車等,這些應用中皆會涉及高功率元件的使用,以提供高功率、高轉換效率、低消耗的元件,進而使這些科技能夠開啟新一代的半導體市場,半導體將從Si時代進展到以GaN、SiC為主的寬能隙半導體時代。
    當元件往下個世代發展,將產品中各元件整合的構裝技術也必須更新,在高功率元件的應用中,由於電子元件需要承受高電壓、高電流與高溫的嚴苛環境,且連結元件間的接點需要高熔點、低電阻、高熱傳的材料特性,開發能夠提供高可靠度、良好熱穩定性的元件、基板、導線間連接的材料成為重要高功率元件封裝的重要課題。過去人們使用的接合材料以燒結Ag或高溫銲錫為主,燒結Ag的製程溫度低,可以提供高熔點、高初始強度、高熱傳、低電阻的接點,但材料成本高且隨著時效促使孔洞擴散會使可靠度下降,熱穩定性不佳;高溫銲錫則是材料成本低,但接點的介金屬化合物相本身低電阻、低熱傳導即脆性的特性,並不利於未來高功率元件的應用。
    本實驗室過去開發Cu/Ni/Ga/Ni/Cu的無介金屬化合物的固溶型暫態液相接合法,配合聲化學合成法製備次微米Ga粒子基漿料,使Ga基材料可以在室溫下儲存,並且利於工業製程中的轉移方法,過去最佳的接合條件為利用Cu/0.1 μm Ni/酸性助焊劑/次微米Ga粒子/0.1 μm Ni /Cu的三明治接合結構於300 ℃、10 MPa下熱壓接合1小時,得到接合界面為FCC-(Cu, Ni, Ga)固溶相的接點,具有13 MPa的接合強度,且隨著長時間的時效處理後,其接合強度會逐漸提升,顯示具有高熱穩定性。然而在工業應用中,目前的接合溫度與壓力過高,且尚未有次微米Ga粒子塗佈量的定量化數據,若以商業化為目標,必須要能夠將此接合製程優化,降低接合溫度與壓力,並提供定量的Ga粒子塗佈參數,以朝向商業化目標邁進。由於此技術的接合機制為利用液態Ga與Ni/Cu基材擴散反應,若能降低Ga的塗佈量可以將低完成固溶相的接合結構的接合溫度與壓力,本研究中除了探討生化學合成法製備的次微米Ga粒子基漿料形貌、穩定性。並研究微量滴管、旋轉塗佈與噴墨列印的轉移製程轉移10 wt.%的次微米Ga粒子基漿料的塗佈厚度與固溶型暫態液相接合的結果,目前的轉移方法尚未能達到穩定重現固溶型暫態液相接合的階段,但可根據本文中的設計邏輯優化,進而降低Ga粒子塗佈量。

    To satisfy the demands of interconncetion in power electronics. An interconnection method using Ga as interconnection materials has been developed. Ga is made into submicron particles by sonnochemistry. In our previous work, a solid-solution type TLP bonding is developed. Submicron Ga-based paste is used in Ni-plated Cu substrate to form a IMC-less bonding interface under bonding condition 300 ℃, 10 MPa, 1 h. Bonding interface will be FCC-(Cu, Ni, Ga) phase instead of IMC phase. The shear strength is around 13 MPa and the strength will gradually increase after thermal aging. In this thesis we measured the relationship of initio solid concentration of Ga SMPs synthesis and particles distribution. Also the stability of storage in ambient environment and different pH value soluiton. The Ga SMPs solid concentration less than 10 wt.% possess weak acidicity (pH=5.6) and good dispersity which can be storaged more than several weaks. Low solid concentration (10 wt.%) is recommended to transfer less Ga SMPs on substrate. The transfer method using now can only provide Ga SMPs thichness around 1 μm level which can not perform this solid-solution type TLP bonding. Therefore, a proposal is given to predict the droplet thickness and radius. Using inkjet printer to control the droplet volume and UV light cleaning to decrease the contact angle of paste and substrate. Lower droplet volume and proper contact angle is expecting to achieve thinner Ga droplet and Ga SMPs layer.

    摘要 i Abstract iii 誌謝 xv 目錄 xvii 圖目錄 xx 表目錄 xxvi 第一章 前言 1 第二章 文獻回顧 3 2.1 電子構裝技術 3 2.1.1 三維度積體電路 4 2.1.2 寬能隙半導體的固晶接合技術 7 2.2 Cu對Cu接合技術 9 2.2.1 合金銲料 10 2.2.2 金屬直接接合 13 2.2.3 微奈米金屬粒子燒結 16 2.2.4 暫態液相接合 20 2.3 固溶型暫態液相接合 22 2.3.1 Cu/Ga界面反應 23 2.3.2 Cu/Pt/Ga/Pt/Cu接合 25 2.3.3 Cu/Ni/Ga/Ni/Cu接合 28 2.3.4 Cu/Ni /flux/Ga SMP /Ni/Cu接合 32 2.4 聲化學合成法 37 2.4.1 純元素金屬粒子 38 2.4.2 多元合金金屬粒子 41 第三章 實驗方法與步驟 44 3.1 聲化學法合成次微米Ga粒子 44 3.2 Ga粒子懸浮液穩定性分析 44 3.3 Ga粒子基漿料黏度量測 44 3.4 減壓濃縮製程 45 3.5 電鍍Ni製程 46 3.6 Ga粒子基漿料塗佈 46 3.7 接觸角量測與基板親水性改質實驗 47 3.8 熱壓接合實驗 48 3.9 微結構分析 48 第四章 結果與討論 49 4.1 Ga粒子基漿料 49 4.1.1 Ga粒子表面形貌 49 4.1.2 Ga粒子懸浮液穩定性 52 4.1.3 Ga粒子基漿料穩定性 56 4.1.4 Ga粒子基漿料濃縮製程 59 4.2 Ga粒子基漿料轉移製程定量化 62 4.2.1 Ni/Ga理論計量化學比估算 62 4.2.2 微量滴管塗佈Ga粒子基漿料的塗佈厚度 64 4.2.3 旋轉塗佈法塗佈Ga粒子基漿料的塗佈厚度 70 4.2.4 噴墨列印法塗佈Ga粒子基漿料的塗佈厚度 73 4.2.5 紫外光清潔時間對Ga粒子基漿料與Ni表面潤濕性影響 80 4.3 Ga粒子基漿料應用於Cu/Ni/Ga/Ni/Cu接合實驗 86 4.3.1 微量滴管塗佈法之接合結果 86 4.3.2 旋轉塗佈法之接合結果 88 4.3.3 噴墨列印法之接合結果 90 第五章 結論 97 第六章 參考文獻 99 第七章 附錄 105 7.1 Cu塊材接合實驗(未成功) 105 7.1.1 刮刀塗佈次微米Ga粒子基漿料。 105 7.1.2 刮刀塗佈次微米Ga基漿料及微量滴管控制助焊劑體積 106 7.1.3 微量滴管控制次微米Ga粒子基漿料與助焊劑塗佈體積 110 7.1.4 刮刀塗佈Ga粒子基漿料Cu對Cu接合的熱擴散係數量測 113 7.1.5 聲化學合成法製備Ga-22In-16Sn粒子 115

    [1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "More-than-Moore white paper," Version, vol. 2, p. 14, 2010.
    [2] S.-k. Lin, H.-m. Chang, C.-l. Cho, Y.-c. Liu, and Y.-k. Kuo, "Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits," Electronic Materials Letters, vol. 11, pp. 687-694, 2015.
    [3] S.-k. Lin, C.-l. Cho, and H.-m. Chang, "Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples," Journal of Electronic Materials, vol. 43, pp. 204-211, 2014.
    [4] S.-k. Lin, M.-j. Wang, C.-Y. Yeh, H.-m. Chang, and Y.-c. Liu, "High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy," Journal of Alloys and Compounds, vol. 702, pp. 561-567, 2017.
    [5] S.-k. Lin, C.-y. Yeh, and M.-j. Wang, "On the formation mechanism of solid-solution Cu-to-Cu joints in the Cu/Ni/Ga/Ni/Cu system," Materials Characterization, vol. 137, pp. 14-23, 2018.
    [6] S.-k. Lin, H.-m. Chang, M.-J. Wang, C.-L. Cho, and C.-Y. Yeh, "Electric connection and method of manufacturing the same," ed: Google Patents, 2016.
    [7] 鐘惠玲. (2017, Jul 10). 台積3奈米廠 落腳台南. Available: https://money.udn.com/money/story/5612/2731091
    [8] S. B. Desai et al., "MoS2 transistors with 1-nanometer gate lengths," Science, vol. 354, pp. 99-102, 2016.
    [9] Y. Akasaka, "Three-dimensional IC trends," Proceedings of the IEEE, vol. 74, pp. 1703-1714, 1986.
    [10] L. Jian-Qiang, "3-D hyperintegration and packaging technologies for micro-nano systems," Proceedings of the IEEE, vol. 97, pp. 18-30, 2009.
    [11] J. H. Lau, "Overview and outlook of three-dimensional integrated circuit packaging, three-dimensional Si integration, and three-dimensional integrated circuit integration," Journal of Electronic Packaging, vol. 136, p. 040801, 2014.
    [12] B. Swinnen et al., "3D integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die containing 10 μm pitch through-Si vias," in Electron Devices Meeting, 2006. IEDM'06. International, 2006, pp. 1-4: IEEE.
    [13] R. Chatterjee et al., "Three dimensional chip stacking using a wafer-to-wafer integration," in International Interconnect Technology Conference, IEEE 2007, 2007, pp. 81-83: IEEE.
    [14] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, "An assessment of wide bandgap semiconductors for power devices," IEEE Transactions on Power Electronics, vol. 18, pp. 907-914, 2003.
    [15] V. R. Manikam and K. Y. Cheong, "Die attach materials for high temperature applications: A review," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, pp. 457-478, 2011.
    [16] M. R. Werner and W. R. Fahrner, "Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications," IEEE Transactions on Industrial Electronics, vol. 48, pp. 249-257, 2001.
    [17] F. Lambert. (2016 ). Toyota is planning long-range battery-powered electric cars for 2020 as its hydrogen fuel cells cars are failing. Available: https://electrek.co/2016/11/07/toyota-long-range-battery-powered-electric-cars-2020-hydrogen-fuel-cells-failing/
    [18] F. Lambert, "Audi confirms a third all-electric vehicle coming before 2020," 2017.
    [19] (2017). The power electronics industry is showing steady growth and high dynamism. Available: http://www.yole.fr/STATUS_POWER_ELECTRONICS_INDUSTRY.aspx#.WrneeIhuYdV
    [20] T. Stockmeier, P. Beckedahl, C. Göbl, and T. Malzer, "SKiN: Double side sintering technology for new packages," in Power Semiconductor Devices and ICs (ISPSD), 2011 IEEE 23rd International Symposium on, 2011, pp. 324-327: IEEE.
    [21] L. Kong, A. C. Rudack, P. Krueger, E. Zschech, S. Arkalgud, and A. Diebold, "3D-interconnect: Visualization of extrusion and voids induced in copper-filled through-silicon vias (TSVs) at various temperatures using X-ray microscopy," Microelectronic Engineering, vol. 92, pp. 24-28, 2012.
    [22] S. Kim, K.-S. Kim, S.-S. Kim, and K. Suganuma, "Interfacial reaction and die attach properties of Zn-Sn high-temperature solders," Journal of Electronic Materials, vol. 38, pp. 266-272, 2009.
    [23] J. Wu, P. Zheng, C. Lee, S. Hung, and J. Lee, "A study in flip-chip UBM/bump reliability with effects of SnPb solder composition," Microelectronics reliability, vol. 46, pp. 41-52, 2006.
    [24] Z. Zhu, C. Li, L. Liao, C. Liu, and C. Kao, "Au–Sn bonding material for the assembly of power integrated circuit module," Journal of Alloys and Compounds, vol. 671, pp. 340-345, 2016.
    [25] D. A. Shnawah, M. F. M. Sabri, and I. A. Badruddin, "A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products," Microelectronics reliability, vol. 52, pp. 90-99, 2012.
    [26] M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, and L. Weng, "Cu6Sn5 morphology transition and its effect on mechanical properties of eutectic Sn-Ag solder joints," Journal of electronic materials, vol. 40, pp. 176-188, 2011.
    [27] D. Ye, C. Du, M. Wu, and Z. Lai, "Microstructure and mechanical properties of Sn–xBi solder alloy," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 3629-3637, 2015.
    [28] K. Tu, H.-Y. Hsiao, and C. Chen, "Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy," Microelectronics Reliability, vol. 53, pp. 2-6, 2013.
    [29] Y.-M. Lin et al., "Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking," in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 351-357: IEEE.
    [30] T. Kim, M. Howlader, T. Itoh, and T. Suga, "Room temperature Cu–Cu direct bonding using surface activated bonding method," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. 449-453, 2003.
    [31] L. Peng, D. F. Lim, L. Zhang, H. Li, and C. S. Tan, "Effect of Prebonding Anneal on the Microstructure Evolution and Cu–Cu Diffusion Bonding Quality for Three-Dimensional Integration," Journal of electronic materials, vol. 41, pp. 2567-2572, 2012.
    [32] T. Sakai, N. Imaizumi, and S. Sakuyama, "A low temperature Cu-Cu direct bonding method with VUV and HCOOH treatment for 3D integration," in Electronics Packaging and iMAPS All Asia Conference (ICEP-IACC), 2015 International Conference on, 2015, pp. 464-467: IEEE.
    [33] T. Suga, M. Akaike, and W. Yang, "Formic acid treatment with Pt catalyst for Cu direct and hybrid bonding at low temperature," in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, 2014, pp. 1143-1147: IEEE.
    [34] S.-k. Lin et al., "Nano-volcanic eruption of silver," Scientific reports, vol. 6, p. 34769, 2016.
    [35] C. Oh, S. Nagao, T. Kunimune, and K. Suganuma, "Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films," Applied Physics Letters, vol. 104, p. 161603, 2014.
    [36] O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, and A. V. Kotko, "Surface plasmon as a probe for melting of silver nanoparticles," Nanotechnology, vol. 21, p. 045203, 2009.
    [37] S. Zhao, S. Wang, D. Cheng, and H. Ye, "Three distinctive melting mechanisms in isolated nanoparticles," The Journal of Physical Chemistry B, vol. 105, pp. 12857-12860, 2001.
    [38] I. Karakaya and W. Thompson, "The Ag-O (silver-oxygen) system," Journal of Phase equilibria, vol. 13, pp. 137-142, 1992.
    [39] Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, and E. Ide, "Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior," Materials transactions, vol. 49, pp. 1537-1545, 2008.
    [40] J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, and K. Suganuma, "Simultaneous synthesis of nano and micro-Ag particles and their application as a die-attachment material," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 7183-7191, 2015.
    [41] T. Morita, Y. Yasuda, E. Ide, Y. Akada, and A. Hirose, "Bonding technique using micro-scaled silver-oxide particles for in-situ formation of silver nanoparticles," Materials transactions, vol. 49, pp. 2875-2880, 2008.
    [42] K. S. Siow, "Mechanical properties of nano-silver joints as die attach materials," Journal of Alloys and Compounds, vol. 514, pp. 6-19, 2012.
    [43] S. Soichi and K. Suganuma, "Low-Temperature and Low-Pressure Die Bonding Using Thin Ag-Flake and Ag-Particle Pastes for Power Devices," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, pp. 923-929, 2013.
    [44] H. Zhang, Y. Gao, J. Jiu, and K. Suganuma, "In situ bridging effect of Ag 2 O on pressureless and low-temperature sintering of micron-scale silver paste," Journal of Alloys and Compounds, vol. 696, pp. 123-129, 2017.
    [45] K. Endo et al., "Deoxidization of Cu oxide under extremely low oxygen pressure ambient," Japanese journal of applied physics, vol. 45, p. L393, 2006.
    [46] N. Shirakawa, "The secret of Cool Plasma Sintering for low-temperature bulk formation from copper nanoparticles," in Electronics Packaging (ICEP), 2016 International Conference on, 2016, pp. 133-136: IEEE.
    [47] Y. Yasuda, E. Ide, and T. Morita, "Evaluation of copper oxide-based interconnecting materials," Open Surface Science Journal, vol. 3, pp. 123-130, 2011.
    [48] L. Bernstein, "Semiconductor Joining by the Solid‐Liquid‐Interdiffusion (SLID) Process I. The Systems Ag‐In, Au‐In, and Cu‐In," Journal of the Electrochemical Society, vol. 113, pp. 1282-1288, 1966.
    [49] J. Li, P. Agyakwa, and C. Johnson, "Kinetics of Ag 3 Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process," Acta Materialia, vol. 58, pp. 3429-3443, 2010.
    [50] J. Li, P. Agyakwa, and C. Johnson, "Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process," Acta Materialia, vol. 59, pp. 1198-1211, 2011.
    [51] T. Yang et al., "Full intermetallic joints for chip stacking by using thermal gradient bonding," Acta Materialia, vol. 113, pp. 90-97, 2016.
    [52] W. Zhang and W. Ruythooren, "Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking," Journal of Electronic Materials, vol. 37, pp. 1095-1101, 2008.
    [53] R. Fields, "Physical and mechanical properties of intermetallic compounds commonly found in solder joints," http://www. metallurgy. nist. gov/mechanical_properties/solder_paper. html, 2002.
    [54] C. C. Lee, P. J. Wang, and J. S. Kim, "Are intermetallics in solder joints really brittle?," in Electronic Components and Technology Conference, 2007. ECTC'07. Proceedings. 57th, 2007, pp. 648-652: IEEE.
    [55] H. Baker and H. Okamoto, "ASM Handbook, Volume 03 - Alloy Phase Diagrams," ed: ASM International.
    [56] 卓政樑, "銅/鎵界面反應及其在三維度積體電路的應用," 成功大學材料科學及工程學系學位論文, pp. 1-76, 2013.
    [57] 葉哲瑜, "聲化學合成鎵基次微米粒子及其在銅對銅接合之應用," 成功大學材料科學及工程學系學位論文, pp. 1-130, 2017.
    [58] A. Yamaguchi, Y. Mashima, and T. Iyoda, "Reversible Size Control of Liquid‐Metal Nanoparticles under Ultrasonication," Angewandte Chemie, vol. 127, pp. 13000-13004, 2015.
    [59] K. S. Suslick, S.-B. Choe, A. A. Cichowlas, and M. W. Grinstaff, "Sonochemical synthesis of amorphous iron," nature, vol. 353, p. 414, 1991.
    [60] H. Friedman et al., "Micro-and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation," Ultrasonics sonochemistry, vol. 20, pp. 432-444, 2013.
    [61] J. W. Boley, E. L. White, and R. K. Kramer, "Mechanically sintered gallium–indium nanoparticles," Advanced Materials, vol. 27, pp. 2355-2360, 2015.
    [62] V. B. Kumar, G. Kimmel, Z. e. Porat, and A. Gedanken, "Formation of particles of bismuth-based binary alloys and intermetallic compounds by ultrasonic cavitation," New Journal of Chemistry, vol. 39, pp. 5374-5381, 2015.
    [63] V. B. Kumar, I. Perelshtein, G. Kimmel, Z. e. Porat, and A. Gedanken, "Reduction of metallic ions by molten gallium under ultrasonic irradiation and interactions between the formed metals and the gallium," Journal of Alloys and Compounds, vol. 637, pp. 538-544, 2015.
    [64] V. B. Kumar, A. Gedanken, G. Kimmel, and Z. e. Porat, "Ultrasonic cavitation of molten gallium: formation of micro-and nano-spheres," Ultrasonics sonochemistry, vol. 21, pp. 1166-1173, 2014.
    [65] V. B. Kumar, A. Gedanken, and Z. e. Porat, "Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water," Ultrasonics sonochemistry, vol. 26, pp. 340-344, 2015.
    [66] V. B. Kumar, Z. e. Porat, and A. Gedanken, "DSC measurements of the thermal properties of gallium particles in the micron and sub-micron sizes, obtained by sonication of molten gallium," Journal of Thermal Analysis and Calorimetry, vol. 119, pp. 1587-1592, 2015.
    [67] L. C. Santos, A. L. Poli, C. Cavalheiro, and M. G. Neumann, "The UV/H2O2-photodegradation of poly (ethyleneglycol) and model compounds," Journal of the Brazilian Chemical Society, vol. 20, pp. 1467-1472, 2009.
    [68] M. A. Villamanan, A. J. Allawi, and H. C. Van Ness, "Excess thermodynamic functions for ternary systems. 11. Total-pressure data and GE for ethylene glycol/acetone/water and for ethylene glycol/acetonitrile/water at 50. degree. C," Journal of Chemical and Engineering Data, vol. 29, pp. 293-296, 1984.
    [69] A. Mihi, M. Ocaña, and H. Míguez, "Oriented Colloidal‐Crystal Thin Films by Spin‐Coating Microspheres Dispersed in Volatile Media," Advanced Materials, vol. 18, pp. 2244-2249, 2006.
    [70] D. Wang and H. Möhwald, "Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin‐Coating," Advanced Materials, vol. 16, pp. 244-247, 2004.
    [71] M.-H. Tsai and W.-S. Hwang, "Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse," Materials transactions, vol. 49, pp. 331-338, 2008.
    [72] G. Elert, "The physics hypertextbook," Found July, vol. 9, p. 2008, 1998.
    [73] J. R. Vig, "UV/ozone cleaning of surfaces," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 3, pp. 1027-1034, 1985.
    [74] X. Shen, C.-M. Ho, and T.-S. Wong, "Minimal size of coffee ring structure," The Journal of Physical Chemistry B, vol. 114, pp. 5269-5274, 2010.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE