簡易檢索 / 詳目顯示

研究生: 江國振
Chiang, Kuo-Chen
論文名稱: 使用電漿熔融技術還原和再生失效金屬觸媒之研究
Recovery and Reduction of Spent Metal Catalyst via Plasma Sintering Technique
指導教授: 申永輝
Shen, Yun-HweiH
共同指導教授: 溫紹炳
Wen, Shaw-Bing
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化觸媒鹼金屬過渡元素支持載體材料電漿煅燒合成氣觸媒再生
外文關鍵詞: Oxidation catalyst, Alkali metal transition elements, Support carrier material, Plasma sinter, syngas, catalyst reduction
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿被稱為“物質的第四種狀態”,是由氣體部分離子化所形成的;在兩電極間可形成穩定電流,而產生極高的溫度((6,000至10,000 ℃)。電漿產生之高溫目前已被應用於工業界,將熔融煤渣、合金、和汽化廢棄物,將其產生之熱源再轉換成合成氣,成為目前工業最乾淨之能源。
    一般金屬觸媒常被塗覆在高表面積支持載體材料上,金屬觸媒物質常為貴重金屬元素、鹼金屬過渡元素及其混合所組成之類等。高表面積支持載體材料係由氧化鋁、氧化鋯、二氧化鈦、二氧化矽或這些氧化物之二或多種之組合所構成。亦可塗佈陶瓷或金屬基質結構上。在經一連串化學反應後,金屬觸媒表面常為有機物質及油汙所覆蓋,而造成金屬觸媒逐漸失效。
    本研究目的提供一種簡單電漿還原製程方法,將含氧金屬失效觸媒再生,並利用電漿技術,以惰性氣體當載體氣體,煅燒貴金屬及含氧金屬失效觸媒。因失效觸媒上殘存含油殘渣,在電漿熔融反應器中,有機含油殘渣會被轉換成合成氣,再利用合成氣與失效鈀、鉑觸媒進行潔淨或還原再生,成為金屬元素。
    本實驗結果顯示利用電漿熔融技術可將失效氧化鎳觸媒、氧化鈷-氧化鉬觸媒及鉑觸媒還原再生成鎳金屬觸媒、鈷-鉬金屬觸媒及鉑觸媒,以4-咪唑丙烯酸經還原再生之鉑金屬觸媒催化氫化成3-(咪唑-4-基-)丙酸轉換率可達97.8%,與使用新鮮觸媒進行氫化反應的轉換率(98.8%)差別不大,可證明利用電漿熔融技術再生之鉑觸媒活性幾可與新鮮觸媒相同。

    關鍵詞:氧化觸媒;鹼金屬過渡元素;支持載體材料;電漿煅燒;合成
    氣;觸媒再生

    Plasma is a quasi-neutral gas consisting of a large amount of charged and neutral active species. These diverse active species with the high energy radiation capability of plasma can help to enhance the chemical reactions substantially and to make some reactions possible. As for gasification, it is commonly applied to convert coal, biomass, and waste materials to syngas and useful chemicals in industries.
    Supported metallic catalysts were widely used in industry for hydrogenation, hydrotreating, and steam-reforming reaction. The metallic catalysts was supported on the ceramic substrates (i.e., silica and alumina) to increase its surface area for achieving better catalytic efficiency. After multiple of catalytic reactions, the surface of metal-supported catalyst was completely covered with organic tar and loses its catalytic efficiency.
    This thesis is the recovery of metal and reduction of metal oxide of the spent catalyst in nitrogen medium under plasma conditions.
    The spent catalysts were sintered and organic wastes are converted to syngas in thermal plasma reactor. The gases evolved upon recovery of metal (Pt) and reduction of metal oxide (NiO2, Co3O4-MoO2) to metal are continuously pumped out the system and clarify the spent alumina-supported platinum catalyst. The results demonstrate that the thermal plasma treatment makes reduction of metal oxide to metal by single step thermal plasma processing.

    Key word: Oxidation catalyst;Alkali metal transition elements;Support carrier material;Plasma sinter;syngas;catalyst reduction

    中文摘要..............................Ι 英文摘要...........................Ⅲ 誌謝...........................Ⅴ 目錄...........................Ⅵ 表目錄...........................Ⅹ 圖目錄........................ⅩⅡ 第一章 緒論 1-1 研究背景.........................1 1-2 研究動機........................2 1-3 研究目的........................4 第二章 文獻回顧 2-1觸媒介紹及運用......................6 2-1-1 觸媒在石化工業之應用...............7 2-1-2 鉑、鈀貴重金屬在燃料電池之應用.........9 2-1-3 鉑、鈀金屬觸媒於汽車工業觸媒轉化器之應用......12 2-1-4 觸媒失活.....................13 2-2 電漿之理論、特性及種類...............17 2-2-1 電漿之理論基礎..................18 2-2-2 電漿的種類..................22 2-2-3 低溫電漿技術..................24 2-2-4 高溫電漿技術..................27 2-2-5 高溫電漿熔融處理技術現況............31 2-2-6 歐、美、日本及台灣等國之電漿熔融爐技術.........34 2-2-7 高溫電漿熔融處理成本預估............42 第三章 研究方法及設備 3-1 反應機制.....................44 3-2 實驗方法.....................47 3-2-1 失效金屬觸媒取得及新鮮觸媒之評估與購買........47 3-2-2 失效含氧金屬觸媒及新鮮觸媒樣品之前處理........47 3-2-3 失效金屬觸媒及新鮮觸媒樣品之一般高溫爐煅燒47 3-2-4 失效金屬觸媒及新鮮觸媒樣品之高溫電漿熔融爐煅燒...........................48 3-3 分析方法及儀器..................48 3-3-1 失效金屬觸媒及新鮮觸媒樣品之熱重分析(TG/DTA)...........................48 3-3-2 失效金屬觸媒及新鮮觸媒樣品之定性與半定量測試...........................49 3-4 電漿實驗設備..................52 第四章 失效氧化鎳/二氧化矽觸媒再生之研究 4-1 實驗方法.....................55 4-2 實驗樣品分析.....................56 4-3 實驗結果與討論.....................57 4-4 反應機制探討...............64 4-5 結論........................66 第五章失效氧化鈷-氧化鉬/氧化鋁觸媒再生之研究 5-1 實驗方法.....................68 5-2 實驗樣品分析..................69 5-3 實驗結果與討論..................70 5-4 結論........................83 第六章 失效鉑/氧化鋁觸媒及氧化鉑•氫氧化物再生之研究 6-1 實驗方法.....................85 6-2 實驗樣品分析..................86 6-3 氫化反應實驗..................87 6-4 實驗結果與討論...............87 6-5 結論.....................107 第七章 結論與建議 ..................109 參考文獻 ........................ 112

    [1]吳俊毅1蕭庭哲2、陳偉聖1、胡紹華3、蔡尚林4、蔡敏行5,含鎳廢觸媒資源化
    回收有價物之可行性研究,資源與環境學術研討會論文集,2008。
    [2] M. R. Judd., In 2nd International Coal & Gas Conversion Confrence,
    Pretoria, p23, 1987。
    [3] S. Liu., G. Xiong., W. Yang., L. Xu., G. Xiong and C. Li,, J. Catal,
    63, 167, 1999。
    [4] M. Huff, P. M. Torniainen and L. D. Schmidt, Cata. Today , 21, 113,
    1994。
    [5] T. Sperle., D. Chen., R. Lødeng and A. Holmen, Appl. Catal.,
    A:Gen, 282,195, 2005。
    [6] Y. J. Kim., S. H. Lee and S. D. Kim., Fuel , 80, 1915, 2001。
    [7] Y. J. Kim., J. M. Kim and S. D. Lee., Fuel , 79, 69, 2000。
    [8] Chatterjee, P. K., Datta, A. B., Kundu, K. M. Canadian., J. Chem.
    Eng, 73, 204, 1995。
    [9] Herguido, J., Corella, J.; Gonzalez-Saiz, J. Ind. Eng. Chem. Res.,
    31, 1274. (1992)
    [10] Judd, M. R., In 2nd International Coal & Gas Conversion Confrence,
    Pretoria, p23, 1987。
    [11] Liu, S., Xiong, G., Yang, W., Xu, L., Xiong, G., Li, C., J. Catal,
    63, 167, 1999。
    [12] Huff, M.,Torniainen, P. M., Schmidt, L. D., Cata. Today , 21, 113,
    1994。
    [13] Rostrup–Nielsen , J. R., Stud. Surf. Sci–Catal, 81, 25, 1994。
    [14] Udengaard, N. R., Hansen, J. H. B., Hansen,D. C., Oil Gas J, 90, 62,
    1992。
    [15] Tokunaga, O., Osada, Y., Ogasawara, S., Fuel, 68, 990, 1989。
    [16] Fish, J. D., Fish, D. C., Hawn, J., Sol Energy Eng, 109, 215, 1987。
    [17] McCary, G. E., McGray,T. A., Chubb, J., Nemecek, J., Simmons, D.E., Sol Energy, 29, 141, 1982。
    [18] Bartholomew, C.H., Mechanisms of Catalyst deactivation ,Applied
    Catalysis A:General,, Vol212, p17-60, 2001。
    [19] 曾煥華、周東川,電漿的世界, 銀禾文化事業有限公司, 1987。
    [20] 賴耿陽譯著,電漿工學的基礎,復文書局,40-107 頁, 1985。
    [21] Forrest I. Boley., Plasmas-Laboratory and Cosmic,科學圖書社,
    1974。
    [22] John Wiley and Sons., Glow Discharge Processes, Brain Chapman ,
    1980。
    [23] Hajime Jimbo., Plasma Melting and Useful Application of Molten
    Slag, Waste Management, Vol16, p417-422, 1998。
    [24] 朱瑾,放射性廢棄物的電漿玻璃化處理法,第十屆廢棄物處理技術研會
    論文集,第264-270頁,1995。
    [25] 行政院原子能委員會核能研究所,電漿焚化熔融處理有害廢棄物產業化應用
    與發展,2002/4。
    [26] 黃添福,高溫電漿資源化處理不可燃漁業廢棄物製成玻璃陶瓷之研究
    ,第3-20頁,1995。
    [27] 行政院原子能委員會核能研究所,都市垃圾焚化爐飛灰電漿熔融處理之評估
    , 第146~149頁,2000/12。
    [28] 陳克紹,低溫電漿表面處理技術原理概述與應用簡介,低溫電漿表面處技
    術於高分子材料上之應用研討會,新竹市工研院化工所,1997。
    [29] P. K. Chu et al., Plasma-surface modification of biomaterials,
    Mater. Sci. Eng. R, 36, 143-206, 2002。
    [30] Boenig, H. V., Plasma science and technology, Cornell University Press, p16-35, 1982。
    [31] B. Chapman., Glow Discharge Processes – Sputtering and Plasma
    Etching, New York, Wiley, p106-109, 1980。
    [32] A. Grill., Cold plasma in materials fabrication: from fundamentals
    to applications, p151-179, IEEE Press, 1994。
    [33] He, X., Ma, T., Qiu, J., Sun, T., Zhao, Z., Zhou, Y.,Zhang, J.,
    Plasma Sources Sci. Technol, 13, 446, 2004。
    [34] Sperle, T., Chen, D., Lødeng, R., Holmen, A., Appl. Catal. A: Gen.,
    282, 195, 2005。
    [35] Kim, Y. J., Lee, S. H., Kim, S. D., Fuel, 80, 1915, 2001。
    [36] Kim, Y. J., Lee, J. M., Kim, S. D., Fuel, 79, 69, 22, 2000。
    [37] Utigard, T. A., Wu, M., Plascencia, G., Marin, T., Chem. Eng. Sci,
    60, 2061, 2005。
    [38] Sharma, S. K., Vastola, F. J., Jr Walker, P. L., Carbon, 34, 1407,
    1996。
    [39] C. Li and Y.-W., Chen Thermochimica Acta, 256, 457, 1995。
    [40] R. Takahashi., S. Sato0., T. Sodesawa., M. Kato., S. Takenaka and S.
    Yoshida., J. Catal, 204, 259, 2001。
    [41] X. Hou., J. Williams. K.-L., Choy Thin Solid Films, 495, 262, 2006。
    [42] Z. L. Zhang., A. M. Tsipouriai., A. M. Efstathiou., X. E. Verykjos.,
    J.Catal, 158, 51, 1996。
    [43] R. J. Vreeburg., P. K. van Tongereren., O. L. J. Gijzeman and J. W.
    Geus., Surf. Sci, 272, 294, 1992。
    [44] N. Q. Minh and T. Takahashi., Scince and Technology of Ceramic Fuel
    Cells, Elsevier, Amsterdam, 1995。
    [45] M. Lorenz and M. Schulze., Surf. Sci, 454–456, 234, 2000。
    [46] J. C. de Jesus., J. Carrazza., P. Pereira and F. Zaera., Surf. Sci, 397, 34, 1998。
    [47] L. Christel., A. Pierre and D. A-M. P. Abel., Thermochimica Acta,306,
    51, 1997。
    [48] J. T. Richardson., R. Scates and M. V. Twigg., Appl. Catal, A: Gen.
    246,137, 2003。
    [49] S. K. Sharma., F. J. Vastola., P. L. Jr Walker., Carbon, 34, 1407,
    1996。
    [50] S. Liu., L. Xu., S. Xie., Q. Wang and G. Xiong., Appl. Catal, A: Gen.
    211, 145, 2001。
    [51] J. Sehested., A. Carlsson., T. V. W. Janssens., P. L. Hansen and A. K. Datye., J. Catal, 197, 200, 2001。
    [52] A. G. Boudjahem., S. M. Monteverd., M. Mercy., M. M. Bettahar., J.
    Catal, 221, 325, 2004。
    [53] J. Herguido., J. Corella and J. Gonzalez-Saiz., Ind. Eng, Chem. Res,
    31, 1274, 1992。
    [54] X. He., T. Ma., J. Qiu., T. Sun., Z. Zhao., Y. Zhou and J. Zhang., Plasma Sources Sci. Technol, 13, 446, 2004。
    [55] Iglesia, E., Soled, SL., Baumgartner, EJ., Reyes, SC (1995), J Catal,
    153,208 。
    [56] Enache, DI., Rebours, B., Roy-Auberger, M., Revel, R., J Catal,
    205, 346, 2002。
    [57] Schulz, H., Van Steen, E., Claeys, M (1994)., Stud Surf Sci Catal, 81, 204。
    [58] Kemp, RA., Adams, CT (1996)., Appl Catal A Gen ,134, 299。
    [59] Maity, SK., Ancheyta, J., Soberanis, L., Aloaso, F(2003).,Appl Catal A Gen, 250, 231。
    [60] Zhao, X., Wei, J (1994)., J Catal, 147, 429。
    [61] Ferrari, M., Delmon, B., Grange, P (2002)., Microporous and Mesoporous Mater, 6, 279。
    [62] Al-Megren, HA., Xiao, T., Gonzalez-Corte,s SL., Al-Khowaite,r SH., Green, MLH(2005) ,J Molecul Catal A chem, 225, 143。
    [63] Al-Zeghaayer, YS., Sunderland, P., Al-Masry, W., Al-Mubaddel, F., Ibrahim, AA., Bhartiya, BK., Jibril, BY (2005)., Appl Catal A Gen, 282, 163 。
    [64] Hayashi, E., Iwamatsu, E., Biswas, MS., Sanada, Y., Ahmed, S., Hamid, H., Yoneda, T (1999)., Appl Catal A Gen , 179, 203。
    [65] Olguin, E., Vrinat, M., Cedeňo, L., Ramirez, J., Borque, M., López-Agudo, A (1997)., Appl Catal A Gen, 165, 1。
    [66] Anas, K., Mohammed, Yusuff, KK (2004)., Appl Catal A Gen, 264, 213。
    [67] Paik, SC., Chung, JS (1995)., Appl Catal B Environ , 5, 233。
    [68] Adachi, M., Contescu, C., Schwarz, JA, (1996)., J Catal, 158, 441。
    [69] Rabah, MA., Hewaidy, IF., Farghaly, FE (1997)., Powder Metall, 40, 283。
    [70] Trimm, TL., Akashah, S., Absi-Halabi, M., Bishara, A (1989)., Proceedings of the Conference on Catalysts in Petroleum Refining, Kuwait, 5–8 March, Elsevier, Amsterdam。
    [71] Sun, DD., Tay, JH., Cheong, HK., Leung, DLK., Qian, G (2001).,J Hazard Mater, B87, 213。
    [72] Busnardo, RG., Busnardo, NG., Salvato, GN., Afonso, JC., (2007), J Hazard Mater, B139, 391。
    [73] Goldwasser, MR., Rivas, ME., Lugo, ML., Pietri, E., Pérez-Zurita, J., Cubeiro, ML., Griboval-Constant, A., Leclercq, G (2005)., Cata Today, 107–108, 106。
    [74] Nagai, M., Matsuda, K(2006)., J Catal, 238, 489。
    [75] Taralas, G., Kontominas, MG (2004)., Fuel , 83, 1235。
    [76] Silva, IF., Palma, C., Klimkiewicz, M., Eser, S (1998)., Carbon , 36, 861。
    [77] Gómez, E., Pellicer, E., Duch, M., Esteve, J., Vallés, E(2006)., Thermochimica Acta, 51, 3214。
    [78] Chatterjee, PK., Datta, AB., Kundu, KM (1995)., Canadian J Chem Eng, 73, 204。
    [79] Herguido, J., Corella, J., Gonzalez-Saiz, J (1992)., Ind Eng Chem Res, 31, 1274。
    [80] Liu, S., Xu, L., Xie, S., Wang, Q., Xiong, G (2001)., Appl Catal A Gen, 211, 145。
    [81]Judd, MR(1987)., In 2nd “International Coal & Gas Conversion Conference, Pretoria”。
    [82] Liu, S., Xiong, G., Yang, W., Xu, L., Xiong, G., Li, C (1999)., J Catal, 63, 167。
    [83] Huff, M., Torniainen, PM., Schmidt, LD (1994)., Cata Today, 21, 113。
    [84] Wehrer, P., Hilaire, L., Petit, E(2004),, Appl Catal A Gen, 273, 249。
    [85] Silva, IF., McKee, DW., Lobo, LS (1997)., J Catal, 170, 54。
    [86] Raróg-Pilecka, W., Jedynak-Koczuk, A., Petryk, J., Miśkiewicz, E., Jodzis, S., Kaszkur, Z., Kowalczyk, Z(2006)., Appl Catal A Gen, 300, 181。
    [87] Xu, J., Zhang, H., Yan, J., Zhang, B., Li, W (2007)., International J of Refractory Metal & Hard Materials, 25, 318。
    [88] Miyao, T., Shishikura, I., Matsuoka, M., Nagai, M., Oyama, ST (1997)., Appl Catal A Gen, 165, 419。
    [89] Popov, OG., Posadov, IA., Rozental, DA., Kornilova, LA (1984)., Pet Chem USSR, 24, 319。
    [90] Dudd, SN., Evershed, RP (1999)., Tetra Lett, 40, 359。
    [91] Davis, A (2000)., International ,J Coal Geology, 44, 325。
    [92] van Deelen, CL., Peterzzelli, D., Lopez, A (1989)., Metals Speciation, Separation, and Recovery, Rome, Italy。
    [93] Jong, BW., Siemens, RE (1986)., Recycling and Secondary Metals, Warrendale. PA, TMS-AIME。
    [94] Matsuda, K (1985)., Suiyõkwai-Shi ,Trans Min Metall Assoc Kyoto, 20, 254。
    [95] Toda, S (1985)., J Min Metall Inst Jpn, 101, 35。
    [96] Mhaske, A. A. and P. M. Dhadke, Extraction Separation Studies of Rh,
    Pt and Pd Using Cyanex 921 in Toluene—A possible Application to
    Recovery from Spent Catalysts, Hydrometallurgy, 61, 143, 2001。
    [97] Guerrero, S., J. T. Miller., A. J. Kropf and E. E. Wolf., In situ
    EXAFS and FTIR Studies of the Promotion Behavior of Pt–Nb2O5/Al2O3
    Catalysts During the Preferential Oxidation of CO, J. Catal., 262,
    102, 2009。
    [98] Starz, K. A., E. Auer., T. Lehmann and R. Zuber, Characteristics of
    Platinum-based Electrocatalysts for Mobile PEMFC Applications, J.
    Power Source, 84, 167, 1999。
    [99] Barefoot, R. R., Distribution and Speciation of Platinum Group
    Elements in Environmental Matrices, Trends. Anal. Chem., 18, 702,
    1999。
    [100] Ek, K. H., G. M. Morrison and S. Rauch., Environmental Routes for
    Platinum Group Elements to Biological Materials, Sci. Total
    Environ., 334–335, 21, 2004。
    [101] Jarvis, K. E., S. J. Parry and J. M. Piper., Temporal and Spatial
    Studies of Autocatalyst-Derived Platinum, Rhodium and Palladium and
    Selected Vehicle-Derived Trace Elements in the Environment,
    Environ. Sci. Technol, 35, 1031, 2001。
    [102] Moldovan, M., M. M. Gomez and M. A. Palacios., On-Line
    Preconcentration Of Palladium on Alumina Microcolumns and
    Determination in Urban Waters by Inductively Coupled Plasma Mass
    Spectrometry, Anal. Chim. Acta, 478, 209, 2003。
    [103] Mzereini, F., B. Skerstupp., F. Alt., E. Helmers and H. Urban.,
    Geochemical Behaviour of Platinum-Group Elements (PGE) in
    Particulate Emissions by Automobile Exhaust Catalysts:
    Experimental Results and Environmental Investigations, Sci.
    Total Environ., 206, 137, 1997。
    [104] Turner, A., M. Crussell., G. E. Millward., A. Cobelo-Garcia and A.
    Fisher., Adsorption Kinetics of Platinum Group Elements in River
    Water, Environ. Sci. Technol., 40, 1524, 2006。
    [105] Cosden, J. M., J. Schijf and R. H. Byrne., Fractionation of
    Platinum Group Elements in Aqueous Systems: Comparative Kinetics of
    Palladium and Platinum Removal from Seawater by Ulva lactuca L,
    Environ. Sci. Technol, 37, 555, 2003。
    [106] Moldovan, M., S. Rauch, M., Gomez, M., A. Palacios and G. M.
    Morrison., Bioaccumulation of Palladium, Platinum and Rhodium from
    Urban Particulates and Sediments by the Freshwater Isopod Asellus
    Aquaticus, Water Res., 35, 4175, 2001。
    [107] Ravindra, K., L. Bencs and R. Van Grieken., Platinum Group
    Elements in the Environment and Their Health Risk, Sci. Total
    Environ, 318, 1, 2004。
    [108] Zimmermann, S., C. M. Menzel., D. Stuben., H. Taraschewski and B.
    Sures., Lipid Solubility of the Platinum Group Metals Pt, Pd and
    Rh in Dependence on The Presence of Complexing Agents, Environ.
    Pollut, 124, 1, 2003。
    [109] de Sa´ Pinheiro, A. A., T. S. deLima., P. C. Campos and J. C.
    Afonso., Recovery of Platinum from Spent Catalysts in a Fluoride-
    Containing Medium, Hydrometallurgy, 74, 77, 2004。
    [110} Kotzian, P., P. Bra´ zdilova´., K. Kalcher., K. Handl and K.
    Vytras., Oxides of Platinum Metal Group as Potential Catalysts in
    Carbonaceous Amperometric Biosensors Based on Oxidases, Sens.
    Actuators B, 115, 42, 2007。
    [111] Greggio, G., P. Sgarbossa., A. Scarso., R. A. Michelin and G.
    Strukul., Platinum(II) Diphosphine Complexes as Catalysts for the
    Baeyer–Villiger Oxidation of Ketones: Is It Possible to Increase
    the Concentration of the Active Species, Inorg. Chim. Acta, 361,
    3230, 2008。
    [112] Akba, O., F. Durap., M. Aydemir., A. Baysal., B. Gu¨mgu¨ m., and S.
    Zkar., Synthesis and Characterizations of ,N,N0,N0-Tetrakis
    (diphenylphosphino) ethylendiamine Derivatives:Use of Palladium(II)
    Complex as Pre-Catalyst in Suzuki Coupling and HeckReactions, J.
    Organomet. Chem, 694, 731, 2009。
    [113] Gerdin, M., M. Penhoat., R. Zalubovskis., C. Pe´termann and C.
    Moberg., Enantioselective Silicon–Boron Additions to Cyclic 1,3-
    Dienes Catalyzed by the Platinum Group Metal Complexes, J.
    Organomet. Chem, 693, 3519, 2008。
    [114] Yoshida, M., M. Al-Amin., K. Matsuda and K. Shishido., Synthesis
    Of Substituted Furans by Platinum-Catalyzed Cyclization of
    Propargylic Oxiranes in Aqueous Media, Tetrahedron Lett., 49,
    5021, 2008。
    [115] He, S., C. Sun., H. Du., X. Dai and B. Wang., Effect of Carbon
    Addition on the Pt-Sn/a-Al2O3 Catalyst for Long Chain Paraffin
    Dehydrogenation to Olefin, Chem. Eng. J, 141, 284, 2008。
    [116] Mora´ n, C., E. Gonza´ lez., J. Sa´nchez., R. Solano., G. Carruyo and A. Moronta, Dehydrogenation of Ethylbenzene to Styrene Using Pt,
    Mo, and Pt–Mo Catalysts Supported on Clay Nanocomposites, J.
    Coll. Inter. Sci, 315, 164, 2007。
    [117] Wang, Z., X. L. Rudy., R. L. Luck., G. Gibbons and S. Fang.,
    Synthesis of Cyclic Allyl Vinyl Ethers using Pt(II)-Catalyzed
    Isomerization of Oxo-Alkynes, Tetrahedron, 65, 2643, 2009a。
    [118] Wang, Z. C., L. J. Wang., P. Zhang., S. Z. Chen., J. M. Xu and J.
    Chen., Effect of Preparation Methods on Pt/Alumina Catalysts for
    the Hydrogen Iodide Catalytic Decomposition, Chin. Chem. Lett.,
    20, 102, 2009b。
    [119] Smith, M. B. and J. March., Advanced Organic Chemistry, p1054, John Wiley & Sons Inc, Hoboken, NJ, 2007。
    [120] Barakat, M. A and M. H. H. Mahmoud., Recovery of Platinum from
    Spent Catalyst, Hydrometallurgy, 72, 179, 2004。
    [121] Chassary, P., T. Vincent., J. S. Marcano., L. E. Macaskie and E.
    Guibal., Palladium And Platinum Recovery from Bicomponent Mixtures
    Using Chitosan Derivatives, Hydrometallurgy, 76, 131, 2005。
    [122] Galisteo, F. C., R. Mariscal., M. L. Granados., J. L. G. Fierro., R. A. Daley and J. A. Anderson., Reactivation of Sintered Pt/Al2O3
    Oxidation Catalysts, Appl. Catal. B Environ, 59, 227, 2005。
    [123] Jafarifar, D., M. R. Daryanavard and S. Sheibani., Ultra Fast
    Microwave-Assisted Leaching for Recovery of Platinum from Spent
    Catalyst, Hydrometallurgy, 78, 166, 2005。
    [124] Okhlopkova, L. B., Properties of Pt/C Catalysts Prepared by
    Adsorption of Anionic Precursor and Reduction with Hydrogen.
    Influence of Acidity of Solution, Appl. Catal. A Gen, 355, 115,
    2009。
    [125] Chanda, M and G. L. Rempel., Selective and Rapid Uptake of
    Copper(II) by a Novel Chelating Resin Containing Imidazole
    Groups, React. Polym, 12, 83, 1990。
    [126] Inoue, K., K. Yoshizuka., Y. Baha., F. Wada and T. Matsuda.,
    Solvent Extraction Of Palladium (II) and Platinum (IV) from
    Aqueous Chloride Media with N,NDioctylglycine, Hydrometallurgy,
    25, 271, 1990。
    [127] Yong, P., N. A. Rowson., J. P. G. Farr., I. R. Harris and L. E.
    Macaskie., A Novel Electrobiotechnology for the Recovery of
    Precious Metals from Spent Automotive Catalysts, Environ.
    Technol, 24, 289, 2003。
    [128] Benson, M., S. O. Prasher and B. K., Simpson,Remediation of
    Metal- Contaminated Leachate Using Chitosan Flakes, Environ.
    Technol, 20, 1177, 1999。
    [129] Pfender, E., Thermal Plasma Technology: Where Do We Stand and
    Where Are We Going, Plasma Chem. Plasma Process, 19, 1, 1999。
    [130] Punnoose, A., M. S. Seehra and I. Wender., Structure, Properties
    And Roles of The Different Constituents in Pt/WOx/ZrO2 Catalysts,
    Fuel Procedure Technol, 74, 33, 2001。
    [131] Liu, Z., B. Guo., S. W. Tay., L. Hong and X. Zhang., Physical and
    Electrochemical Characterizations of Pt/Pb/C Catalyst Prepared by
    Pyrolysis of Platinum (II) and Lead (II) Acetylacetonate, J.
    Power Sources, 184, 16, 2008。
    [132] Branda˜o, D. S., R. M. Galva˜o., M. da Grac¸a., M. C. da Rocha.,
    P. Bargiela and E. A. Sales., Pt and Pd Catalysts Supported on Al2O3 Modified with Rare Rarth Oxides in the Hydrogenation of Tetralin, in the Presence of Thiophene, Catal.Today, 133–135,324 2008。
    [133] Guemini, M and Y. Rezgui., Effect of Pretreatment Conditions on
    the Catalytic Performance of Ni–Pt–W Supported on Amorphous
    Silica-Alumina Catalysts, Appl. Catal. A Gen, 345, 164, 2008。
    [134] Lin, H. Y and Y. W. Chen., The Mechanism of Reduction of Cobalt
    by Hydrogen, Mater. Chem. Phys, 85, 171, 2004。
    [135] Altman, J., M. Shoef., M. Wilchek and A. Warshawsky., Bifunctional
    Chelating Agents.Part 2. Synthesis of 1-(2-Carboxyethyl)Ethylene-
    diaminetetraacetic Acid by RingCleavage of Substituted Imidazole,
    J. Chem. Soc. Perkin Trans, 1, 59, 1984。
    [136] van Deelen, C. L., D. Peterzzelli and A. Lopez., Metals
    Speciation, Separation, and Q7 Recovery, Rome, Italy, 1989。.
    [137] Jong, B. W and R. E,. Siemens, In Recycling and Secondary Metals,
    P.A. Warrendale, Ed, TMS-AIME, 1986。

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE