簡易檢索 / 詳目顯示

研究生: 許君漢
Hsu, Chun-Han
論文名稱: 白金擔載於表覆聚苯胺碳層/奈米碳管之製備與其催化效果
Preparation and Catalytic Effect of Pt Loaded on Nitrogen-Doped Carbon Layer Surrounding Carbon Nanotubes through Polyaniline
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 96
中文關鍵詞: 奈米碳管燃料電池甲醇氧化反應氧氣還原反應氮摻雜複合材料
外文關鍵詞: carbon nanotubes, fuel cells, methanol oxidation reaction, oxygen reduction reaction, nitrogen-doped, composite
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們製備出表覆含氮碳層/奈米碳管此一新穎複合碳材,並應用於直接甲醇燃料電池的碳載體及電催化部分。此論文可分為以下四部分:
    (1) 本研究以一非破壞性方法分散奈米碳管並擔載鉑觸媒於碳管表面。以苯胺分散處理後的碳管較原碳管具有較大的孔洞體積及較多的中孔洞面積,且沒有化學修飾法破壞碳管結構的缺點,同時藉由苯胺可將尺寸小且粒徑分布均一的鉑粒子均勻地擔載於碳管表面 (1.9±0.4、2.1±0.3 and 2.4±0.4 nm for 14.9、29.1 and 49.0% Pt/CNT, respectively)。從實驗結果可知苯胺於此研究中具有分散劑與穩定劑的功能,且整個製程具有簡單、低成本、高效率及可量化的優點。

    (2) 本研究以苯胺為碳管的分散劑並將苯胺做為碳管表面含氮碳層的碳及氮源,且藉由簡易地調控苯胺的量及碳化溫度以製備不同氮含量的碳材(N/C比為 3.3-14.3 %),最後將此表面含氮碳層碳管應用於直接甲醇燃料電池的碳載體中。以保護劑可將鉑粒子(粒徑大小約1.5到2.0 奈米)均勻分散於含氮碳層碳管表面。而在單電池測試系統中,鉑擔載於含氮碳層碳管所製備的觸媒層較商用觸媒層高出37%的質量活性。

    (3) 本研究中藉由將鉑奈米粒子嵌入於碳管表面的含氮碳層中合成出具高耐久性的觸媒層(Pt@NC-CNT)。此觸媒層於甲醇氧化反應所得到的最大氧化電流密度(Imax)為13.2 mA cm-1,較商用觸媒的電流密度(10.8 mA cm-1)高出20%,而在加速耐久性測試中,Pt@NC-CNT 於2000個循環掃描後,Imax由13.2下降至6.9 mA cm-1(下降48%),而商用觸媒則從10.8下降至0.46 mA cm-1(下降96%)。結果顯示將鉑奈米粒子嵌入碳管表面的含氮碳層中,可得到具高耐久性的觸媒層。

    (4) 此研究嘗試直接以含氮碳層碳管應用於鹼性燃料電池的氧氣還原反應。此含氮碳層與原奈米碳管具有相近的表面積與結晶性(206 m2 g-1 and crystallinity (ID/IG=0.77) as CNT (surface area = 210 m2 g-1, ID/IG=0.75))。於電化學氧氣還原反應中,相同重量的含氮碳材不僅較原奈米碳管具有高半波電位及高電流值,且100毫克無鉑觸媒的含氮碳材亦較10毫克含20%鉑的商用觸媒具有較高的氧氣催化活性及效能。此低成本的複合碳材有潛力於鹼性環境下成為替代鉑系觸媒的新材料。

    In this dissertation, nitrogen-doped carbon layer surrounding carbon nanotubes (NC-CNT) was prepared, and it is applied as carbon support and electrocatalysts for the anode and cathode of a direct methanol fuel cell. This monograph is divided into four parts as follows:
    (1) A novel method has been developed to debundle carbon nanotubes (CNTs) and load Pt nanoparticles on them without damaging their graphene structures. The aniline- stabilized CNTs have a larger pore volume and larger amount of mesopores than pristine CNTs, and the debundling of CNTs by aniline are appears to be a physical rather than a chemical process. Meanwhile, under the presence of aniline, the Pt nanoparticles are anchored on CNTs with a uniform dispersion and small particle size distribution (1.9±0.4、2.1±0.3 and 2.4±0.4 nm for 14.9、29.1 and 49.0% Pt/CNT, respectively). It is clear that aniline functions as a dispersant and a stabilizer in this paper. Additionally, the whole process, which could be easily scaled up for industrial production, is simple, efficient, and inexpensive.

    (2) Novel nitrogen-doped carbon layer surrounding carbon nanotubes composite (NC-CNT) (N/C ratio 3.3-14.3%) as catalyst support has been prepared using aniline as a dispersant to CNTs and as a source for both carbon and nitrogen coated on the surface of the CNTs, where the amount of dotted nitrogen is controllable. A uniform dispersion of Pt nanoparticles (ca. 1.5 to 2.0 nm) was then anchored on the surface of NC-CNT by using aromatic amine as a stabilizer. In single cell test, Pt/NC-CNT catalyst has greatly enhanced catalytic activity toward the oxygen reduction reaction, resulting in an enhancement of ca. 37 % in mass activity compared with that of E-TEK.

    (3) An exceptionally durable and highly active Pt catalyst has been prepared by embedding Pt nanoparticles inside the pores of a nitrogen-doped porous carbon layer coated on carbon nanotubes (denoted as Pt@NC-CNT). The maximum current density (Imax) during the methanol oxidation reaction (MOR) observed for Pt@NC-CNT (13.2 mA cm-1) is 20% higher than that of the commercial Pt/XC-72 (10.8 mA cm-1) catalyst. In the accelerated durability test, the Imax after 2000 cycles for Pt@NC-CNT-600 decreased from 13.2 to 6.9 mA cm-2 (48% decreased) compared with Pt/XC-72, which showed a decrease from 10.8 to 0.46 mA cm-2 (96% decreased). This indicates that the Pt@NC-CNT catalyst has extremely stable electrocatalytic activity for MOR owing to its unique structure, whereby Pt is protected by being embedded inside the pores of the nitrogen-doped carbon layer.

    (4) A Pt-free nitrogen-doped carbon layer coated on carbon nanotubes (NC-CNT) was easily prepared in situ and showed high catalytic activity for oxygen reduction reaction (ORR) in alkaline fuel cells. This NC-CNT nanocomposite has a comparable surface area of 206 m2 g-1 and crystallinity (ID/IG=0.77) as CNT (surface area = 210 m2 g-1, ID/IG=0.75). The half-wave potentials of 100 μg Pt-free NC-CNT are higher than that of the 10 μg commercially available Pt-based catalyst (Pt/XC-72, E-TEK) during electrocatalytic ORR activity test. Also, the enhanced steady-state diffusion current observed for the 100 μg NC-CNT is higher than that of 10 μg Pt/XC-72. This low-cost Pt-free NC-CNT holds potential as a revolutionary alternative to replace Pt for ORR in alkaline electrolytes.

    ABSTRACT………………………………………………………………………..…iii ACKNOWLEDGEMENT………………………………………………………………vii CHAPTER I INTRODUCTION……………………………….……………………...1 1.1 General concept of fuel cells……………………………………………………..1 1.2 Benefits of fuel cells………………………………………………………………2 1.3 Fuel cell types……………………………………………………………………..3 1.4 Electrocatalysts for PEMFCs……………………………………………………6 1.4.1 Catalyst support……………………………………………………………6 1.4.2 Nitrogen-doped carbon materials………………………………………7 1.5 Research Motivation……………………………………..………………………8 CHAPTER II THEOREMS…………………………………………………………9 2.1 Cyclic voltammetry (CV)………………………………………………………..9 2.2 Determination of electrochemical active surface area (EAS)………………12 2.3 PEMFC Electrochemical Performance, Membrane Electrode Assembly...15 CHAPTER III EXPERIMENTAL SECTION………………………………………18 3.1 Materials………………………………………………………………………..18 3.2 Sample preparation…………………………………………………..…………18 3.2.1 Dispersion of CNTs in IPA/water solution and preparation of Pt/CNT catalyst…………………………………………………………………….18 3.2.2 Synthesis of N-doped carbon layer surrounding CNTs……...…………19 3.2.3 Loading of Pt colloids on NC-CNT………………………………………19 3.2.4 Synthesis of Pt nanoparticles embedded in NC-CNT……….………….20 3.3 Characterizations……………………………………………………………….20 3.3.1 Transmission electron microscopy (TEM)………………………………20 3.3.2 Scanning electron microscopy (SEM)……………………………………21 3.3.3 Nitrogen adsorption and desorption isotherms……………………21 3.3.4 X-ray photoelectron spectroscopy (XPS)………………………………..21 3.3.5 X-ray powder diffraction (XRD)…………………………………………22 3.3.6 Raman spectroscopy………………………………………………………22 3.3.7 Thermogravimetric analysis (TGA)……………………………………..22 3.3.8 UV-vis spectroscopy……………………...………………………………22 3.3.9 Four point probe…………………………………………………………..22 3.4 Electrochemical measurements…………………………………...22 3.4.1 Preparation of working electrode......22 3.4.2 Preparation of membrane electrode assembly(MEA)....24 3.4.3 Single cell test...................24 3.4.4 Electrochemical measurements of NC-CNT……………………………25 CHAPTER IV RESULTS AND DISCUSSION……………………………………..27 4.1 Aniline as a Dispersant and Stabilizer for the Preparation of Pt Nanoparticles Deposited on Carbon Nanotubes………………………………………………27 4.1.1 Aniline as a dispersant for preparation of CNT solution………………27 4.1.2 Aniline as a stabilizer for large quantities deposition of Pt nanoparticles on carbon nanotubes……………………………………………………..32 4.1.3. EAS of Pt catalyst supported on the Carbon Nanotube…………...…..36 4.1.4 Performance in the cathode of DMFC…………………………………..37 4.2 Controllable-Nitrogen Doped Carbon Layer Surrounding Carbon Nanotubes as Novel Carbon Support for Oxygen Reduction Reaction…………………..39 4.2.1 Structural properties of the NC-CNT……………………………………40 4.2.2 Structural properties of NC-CNT at different pyrolysis temperatur…42 4.2.3 Properties and electrocatalytic performances of Pt/NC-CNT…………47 4.3 The use of carbon nanotubes coated with a porous nitrogen-doped carbon layer with embedded Pt for the methanol oxidation reaction………………..52 4.3.1 Structural properties of Pt@NC-CNT catalysts………………………..53 4.3.2 Structural properties of Pt@NC-CNT catalyst under different carbonization temperatures………………………….…………………..55 4.3.3 Electrocatalytic activity for methanol oxidation reaction………………61 4.4 Pt-Free Nitrogen-Doped Layer Surrounding Carbon Nanotubes Used as A Catalyst for Oxygen Reduction Reaction……………………………………...66 CHAPTER V CONCLUSIONS………………...……………………………72 REFERENCES………………………………………………………74 CURRICULUM VITAE…………………………………………80

    [1] 李宛庭, 碩士論文,“Urchin-Like Material of Mesoporous Carbon Hollow Spheres Grown with Carbon Nanotubes as Cathode Support for Fuel Cells.”國立成功大學化學工程研究所,九十八年.
    [2] James, L.; Andrew, D., Fuel cell systems explained 2003, John Weiley, England.
    [3] Barbir, F., PEM Fuel Cells: Theory and Practice 2005, Elsevier Academic Press.
    [4] Apleby, A. J. and Folkes, F. R., Fuel Cell Handbook 1989, Van Nostrand Reinhold, New York.
    [5] Bolmen, L. J. and Megerwa, M. N., Fuel Cell Systems 1993, Plenum Press, New York and London.
    [6] Acres, G. J. K.; Frost J. G.; Hards, G. A.; Potter, R. J.; Ralph, T. R.; Thompsett D.; Burstein, G. T.; and Hutchings, G. J., Catalysis Today 1997, vol. 38, p393.
    [7] Stonehart, O., J. Apl. Electrochem. 1992, vol.22, p995.
    [8] Parsons, R.; Van der Noot, T., J. Electroanal. Chem. 1988, vol. 9, p257.
    [9] Bagotzky, V. S., Vassiliev, Y. B.; Khazova, O. A. J. Electroanal. Chem. 1977, vol. 81, p229.
    [10] Neergat, M.; Leveratto, D.; Stimming, U., Fuel cells 2002, vol. 2, p25.
    [11] Sarma, L. S.; Lin, T. D.; Tsai, Y. W.; Chen, J. M.; Huang, B. J., J. Power Sources 2005, vol. 138, p44.
    [12] Xue, X.; Lu, T.; Liu, C.; Xing, W. Chem. Comm. 2005, 1601.
    [13] Kim JH, Fang B, Yoon SB, Yu JS. Appl. Catal. B: Environ 2009 ; 88(3-4): 368-375.
    [14] Girishkumar G, Vinodgopal K, Kamat PV. J. Phys. Chem. B 2004; 108(52) 19960-19966.
    [15] Wu G, Li DY, Dai CS, Wang DL, Li N. Langmuir 2008; 24(7): 3566-3575.
    [16] Yu JS, Kang S, Yoon SB, Chai G. J. Am. Chem. Soc. 2002; 124(32): 9382-9383.
    [17] Wen ZH, Liu J, Li JH. Adv. Mater. 2008; 20(4): 743-747.
    [18] Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP. Chem. Mater. 2009; 21(8): 1524-1530.
    [19] Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP. J. Power Sources 2006; 155(2): 95-110.
    [20] Xu WL, Zhou XC, Liu CP, Xing W, Lu TH. Electrochem. Commun. 2009; 9(5) 1002-1006.
    [21] Zhang, W. D.; Phang, I. Y.; Liu, T. X. Adv. Mater. 2006, 18, 73-77.
    [22] Liu, L.; Grunlan, J. C. Adv Funct. Mater. 2007, 17, 2343-2348.
    [23] Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Chem. Eur. J. 2003, 9, 4000-4008.
    [24] Deng, W. Q.; Matsuda, Y.; Goddard Ⅲ, W. A. J. Am. Chem. Soc. 2007, 129, 9834-9835.
    [25] Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Angew. Chem. Int. Ed. 2009, 48, 1-5.
    [26] Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Alonso, A. M.; Prato, M. J. Am. Chem. Soc. 2008, 130, 8733-8740.
    [27] Yu, J.; Grossiord, N.; Koning, C. E.; Loos, J. Carbon 2007, 45, 618-623.
    [28] Shin, J. Y.; Prekumar, T.; Geckelaer, K. E. Chem. Eru. J. 2008, 14, 6044-6048.
    [29] Prabhuram, J.; Wang, X.; Hui, C. L.; Hsing, I.-M. J. Phys. Chem. B. 2003, 107, 11057-11064.
    [30] Mu, Y.; Liang, H.; Hu, J.; Liang, L.; Wan, L. J. Phys. Chem. B 2005, 109, 22212-22216.
    [31] Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007, 129, 9999-10010.
    [32] Kin, K. K.; Yoon, S. M.; Choi, J. Y.; Lee, J.; Kim, B. K.; Kim, J. M.; Lee, J. H.; Paik, U.; Park, M. H.; Yang, C. W.; An, H.; Chung, Y.; Lee, Y. H. Adv. Funct. Mater. 2007, 17, 1775-1783.
    [33] Bessel, C. A.; Laubernds, K.; Rodriguez, N. M.; Baker, R. T. K. J. Phys. Chem. B 2001, 105, 1115-1118.
    [34] Prabhuram, J.; Zhao, T. S.; Tang, Z. K.; Chen, R.; Liang, Z. X. J. Phys. Chem. B 2006, 110, 5245-5252.
    [35] Wang, X.; Li, W.; Chen, Z.; Waje, M.; Yan, Y. J. Power Sources 2006, 158, 154-159.
    [36] Li, X; Hsing, I.-M. Electrochimica Acta 2006, 51, 5250-5258.
    [37] Liu, J.-M.; Meng, H.; Li, J.-l.; Liao, S.-J.; Bu, J.-H. Fuel Cells 2007, 5, 402-407.
    [38] Banerjee, S.; Wong, S. S. J. Am. Chem. Soc. 2003, 125, 10342-10350.
    [39] Girishkumar, G.; Vinodgopal, K.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 19960-19966.
    [40] Li, W. Z.; Wang, X.; Chen, Z. W.; Waje, M, Yan, Y. H. Langmuir 2005, 21, 9386-9389.
    [41] Liu, H. S.; Song, C. J.; Zhang, L. ; Zhang, J. J. ; Wang, H. J.; Wilkinson, D. P. J Power Sources 2006, 155, 95-110.
    [42] Chen, Y. G.; Wang, J. J.; Liu, H.; Banis, M. N.; Li, R. Y.; Sun, X. L.; Sham, T.-K.; Ye, S. Y.; Knights, S. J. Phys. Chem. C 2011, 115, 3769-3776.
    [43] Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. Science 2009, 324, 71.
    [44] Choi, B.; Yoon, H.; Park, I. Jang,, J.; Sung, Y. Carbon 2007, 45,2496.
    [45] Gong, K. P.; Du, Feng.; Xia, Z. H. ; Durstock, M. ; Dai, L. Science 2009, 323, 760-763.
    [46] Shao, Y. Y. ; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B: Environ. 2008, 79, 89-99.
    [47] Matter, P. H. Zhang, L. Ozkan, U. S. J Power Sources 2006, 239, 83-96.
    [48] Lei, Z. B.; Zhao, M. G.; Dang, L. Q.; Zn, L. H.; Lu, M.; Lo, A. Y.; Yu, N. Y.; Liu, S. B. J. Mater. Chem. 2009, 19, 5985-5995.
    [49] Xia, Y.; Mokaya, R. Chem. Mater. 2005, 17, 1553.
    [50] Fuertes, A. B.; Centeno, A. J. Mater. Chem. 2005, 17, 1079.
    [51] Jiang, L. Q.; Gao, L. Carbon 2003, 41, 2923.
    [52] Roy, S. C.; Harding, A. W.; Russell, A. E.; Thomas, K. M. J. Electrochem. Soc. 1997, 144, 2323.
    [53] Jaouen, F.; Lefevre, M.; Dodelet, J. P.; Cai, M. J. Phys. Chem. B 2006, 110, 5553.
    [54] Rao, C. V. ; Cabrera, C. R. ; Ishikawa, Y. J. Phys. Chem. Lett. 2010, 1, 2622-2627.
    [55] Sidik, R. A.; Anderson, A. B. J. Phys. Chem. B 2006, 110, 1787-1793.
    [56] Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B 2005, 109, 4707-4716.
    [57] Jafri, R. I.; Arockiados, T.; Rajalakshmi, N.; Ramaprabhu, S. J. Electrochem. Soc. 2010, 157, B874-B879.
    [58] Kuo, P. L.; Hsu, C. H.; Li, W. T.; Jhan, J. Y.; Chen, W. F. J. Power Sources 2010, 195, 7983-7990.
    [59] Lim, D. H.; Lee, W. D.; Choi, D. H.; Lee, H. I. Appl. Catal. B: Environ. 2010, 94, 85-96.
    [60] Hsu, C. H.; Liao, H. Y.; Kuo, P. L. J. Phys. Chem. C 2010, 114, 7933-7939.
    [61] Bond, A. M., Broadening Electrochemical Horizons-Principles and Illustration os Voltammetric and Related Techniques, Oxford University Press Inc., New York, 2002.
    [62] Bockris, J. O. M.; Reddy, A. K. N.; Gamboa-Aldeco, M., Modren Electrochemstry 2nd ed., Kluwer Academic/Plenum Publisher, New York, 2000.
    [63] Wang, J. H., Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, 2000.
    [64] Bafotzky, V. S., Fundamentals of Electrochemistry, Plenum Press, New York, 1993.
    [65] Gosser, D. K., Cyclic Voltammetry: simulation and analysis of reaction mechanism, VCH Publisher Inc., 1993.
    [66] Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., 2001.
    [67] Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R., J. Power Sources, 2004, 138, 1-2.
    [68] Kinoshita, K.; Ferrier, D. R., Electrochimica Acta, 1978, 23,1.
    [69] Kinoshita, K.; Ferrier, D. R., Journal of the Electrochemical Society, 1976, 123, 8.
    [70] Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L. Electrochemistry for Chemists, John Wiley& Sons Inc., 1995.
    [71] Vielstich, W.; Lamm, A.; Gasteiger, H. A., Handbook of Fuel Cells: Fundamentals Technology and Applications, John Wiley & Sons Inc., 2003.
    [72] Gilman, S., J. Phys. Chem., 1962, 66, 1.
    [73] Gilman, S., Electroanalytical Chemistry- A Series of Advances A. J. Bard, Marcel Dekker, New York, 1967, 2, 451.
    [74] Breiter, M.; Kammermeier, H.; Knorr, C. A., Electrochem., 1956, 60.
    [75] Wood, R., J. Electroanal. Chem., 1974, 49,2.
    [76] Gilman, S., J. Electroanal. Chem., 1964, 7, 5.
    [77] EG&G Technical Services, I., Fuel Cell Handbook (7th Ed.), 2004.
    [78] Park, J. G.; Lee, S. H.; Ryu, J. S.; Hong, Y. K.; Hong, Y. K.; Kim, T. G.; Busnaina, A. A. J. Electrochem. Soc. 2006, 9, G811-G814
    [79] Yu, J.; Grossiord, N.; Koning, C. E.; Loos, J. Carbon 2007, 45, 618-623.
    [80] Wang, Z.; Yuan, J.; Li, M.; Han D.; Zhang, Y.; Shen, Y.; Niu, L.; Ivaska, A. J. Electroanal. Chem. 2007, 599, 121-126.
    [81] Li, Q; Kinloch, I. A.; Windle, A. H. Chem. Commun. 2005, 3283-3285.
    [82] Kuo, P. L.; Chen, W. F.; Huang, H. Y.; Chang, I. C.; Dai, S. A. J. Phys. Chem. B 2006, 110, 3071-3077.
    [83] Wang, S.; Wang, X.; Jiang S. P. Langmuir 2008, 24, 10505-10512.
    [84] Pozio, A.; Francesco, M. DF.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13-19.
    [85] Sen, R.; Satishkumar, B. C.; Govindaraj, A.; Harikumar, K. R.; Raina, G.; Zhang, J. P.; Cheetham, A. K.; Rao, C. N. R. Chem. Phys. Lett. 1998, 287, 671-676.
    [86] Kudashov, A. G.; Okotrub, A. V.; Bulusheva, L. G.; Asanov, L. P.; Shubin, Y. V.; Yudanov, N. F.; Yuddanova, L. I.; Danilovich, V. S.; Abrosimov, O. G. J. Phys. Chem. B 2004, 108, 9048-9053.
    [87] Terrones, M.; Kamalakaran, R.; Seeger, T.; Ruhle, M. Chem. Commun. 2000, 2335-2336.
    [88] Jiang, L. Q.; Gao, L. Carbon 2003, 41 , 2923-2929.
    [89] Ewels, C. P.; Glerup, M. J. Nanosci. Nanotechnol. 2005, 5, 1345-1363.
    [90] Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006, 110, 1787-1793.
    [91] Jaouen, F.; Lefevre, M.; Dodelet, J. P.; Cai, M. J. Phys. Chem. B 2006, 110, 5553-5558.
    [92] Hsu, C. H.; Wu, H. M.; Kuo, P. L. Chem. Communi. 2010, 46, 7628-7630.
    [93] Wen, F.; Simon, U. Chem. Mater. 2007; 19(14) 3370-3372.
    [94] Kuo, P.L.; Hsu, C. H. ACS Appl. Mater. Interfaces 2011; 3(2): 115-118.
    [95] Lei, Z.; Zhao, M.; Dang, L.; An, L.; Lu, M.; Lo, A. Y. et al. J. Mater. Chem. 2009; 19(33): 5985-5995.
    [96] Choi, B; Yoon, H.S.; Park, I.S.; Jang, J.S.; Sung, Y.E. Carbon 2007; 45:2469-2501.
    [97] Gammon, W.J.; Kraft, O.; Reilly, A.C. Carbon 2003; 41(10): 1917-1923.
    [98] Wikander, K.; Ekstrom, H.; Palmqvist, A. E. C.; Lindbergh, G. Electrochimica Acta 2007; 52: 6848-6855.

    下載圖示 校內:2014-10-31公開
    校外:2014-10-31公開
    QR CODE