簡易檢索 / 詳目顯示

研究生: 陳俊价
Chen, Chun-chieh
論文名稱: 古亭坑層泥岩含水量對力學特性影響之研究
Investigating the Mechanical Behavior of Gutingkeng Mudstone Under Different Water Contents
指導教授: 吳建宏
Wu, Jian-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 147
中文關鍵詞: 破壞準則三軸試驗脆延性轉換壓力含水量動態三軸試驗古亭坑層泥岩
外文關鍵詞: triaxial test, Gutingkeng mudstone, cyclic triaxial test, water content, failure criterion, Brittle-Ductile transition pressure
相關次數: 點閱:127下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣西南部麓山帶軟岩區地層以新第三紀碎屑狀沉積岩為主,該區出露之岩盤有砂岩、泥岩及其互層,其中以古亭坑層泥岩分布最廣,其成岩時間較短,此泥岩特性為遇水極易軟化崩解,乾燥時堅硬如岩石,隨含水量增加,其行為又漸趨於粘性土壤。
    本研究係針對古亭坑層泥岩進行一系列相關試驗以了解不同含水量下泥岩的基本性質與靜、動態力學行為。其中自由回脹試驗結果為回脹應變量18.1%;回脹壓力為0.45MPa。在單軸壓縮試驗部分,發現泥岩試體隨含水量的增加,泥岩的單軸壓縮強度逐漸降低;而破壞應變卻逐漸增加,並且乾燥泥岩試體(w=0%)的單軸壓縮強度為高含水量泥岩試體(w=9%~10%)的11倍。另一方面,泥岩試體的含水量增加則泥岩體積應變最大值越早出現。而透過巴西試驗可知,乾燥泥岩試體的張力強度為高含水量泥岩試體張力強度的18倍。至於在三軸壓縮試驗當中,當泥岩試體所受圍壓增加,其尖峰強度及殘餘強度也同時提高。而在相同圍壓條件下,較高含水量的泥岩試體,其尖峰強度、殘餘強度及正割模數較低。且泥岩在圍壓小於40MPa時,正割模數與圍壓呈線性關係增加,但在圍壓大於40MPa後,受到材料應變硬化的影響,正割模數與圍壓則呈現非線性之關係。此外,泥岩的脆延性轉換壓力隨含水量增加而有逐漸下降的趨勢。以Mohr-Coulomb、Hoek-Brown、Adachi和Johnston破壞準則分析三軸壓縮試驗結果發現,Adachi和Johnston破壞準則模擬泥岩的破壞行為適用性最佳,並且模擬殘餘強度曲線也有相當不錯的結果。而在動態岩石三軸試驗結果部分,泥岩試體的剪力模數隨著反覆振動次數增加而增加,阻尼比則降低,當試體即將發生破壞時,剪力模數會急速下降,而阻尼比則急速上升。

    The geological deposits are mainly consisted of Neogene debris sedimentary rock in the foothills of southwestern Taiwan. The rock masses consist of sandstone, mudstone and alternating sandstone-mudstone formations. The Gutingkeng mudstone is distributed most widely in this area. Due to the short diagenetic time, this mudstone easily slakes with water. It behaves as a hard rock in the dry state but acts as a cohesive soil under high water content.
    In this study, a series of tests was conducted to understand the basic property and static and dynamic mechanical behavior of the Gutingkeng mudstone under different water contents. Swelling test results show that the swelling strain is 18.1 %; swelling pressure is 0.45 MPa. In uniaxial compression test, the uniaxial compressive strength gradually decreased and the failure strain has gradually increased with the increase of the water content in the mudstone. The test results show that the uniaxial compressive strength of the dry mudstone sample in w = 0% is 12 times of the one with high water content (w = 9% ~ 10%). On the other hand, the maximum values of volume strain of specimens occur faster with the increase of the water content. The results of Brazil tests indicate that the tensile strength of dry mudstone is 18 times as the ones with high water content. In addition, the triaxial test results indicate that the peak and residual strengths of mudstone increase with increase of the confining pressure, and the higher water content sample has the lower secant modulus. Moreover, when the confining pressure is less than 40 MPa, the secant modulus of the mudstone and confining pressure is linear. But not in the cases when the confining pressure is greater than 40 MPa. Besides, the Brittle-Ductile transition pressure increases gradually with the increasing water content of the specimen. Finally, using Mohr-Coulomb, Hoek-Brown, Adachi and Johnston criterion to analyze triaxial test results, we found that the Adachi and Johnston criterion fits the best among the selected failure criterion to simulate the mudstone failure behavior. The cyclic triaxial test results indicate that as the numbers of cyclic loading increase, the shear modulus increases, but the damping ratio decreases. Furthermore, when the mudstone specimen approach failure, the shear modulus rapidly declines, while the damping ratio rises rapidly.

    摘要......................................................I ABSTRACT..................................................II 誌謝......................................................IV 目錄......................................................V 表目錄....................................................IX 圖目錄....................................................XI 照片目錄..................................................XV 第一章 緒論...............................................1 1.1 前言..................................................1 1.2 研究動機與目的........................................1 1.3 研究流程..............................................2 第二章 相關文獻...........................................4 2.1 台灣西南部麓山帶泥岩之研究............................4 2.1.1 泥岩之背景及地質分佈................................4 2.1.2 泥岩之定義及形成....................................7 2.1.3 泥岩之組成礦物......................................10 2.1.4 前人於西南部泥岩進行相關力學研究....................15 2.2 含水量對泥岩之研究....................................16 2.2.1 含水量對泥岩之影響..................................16 2.2.2 含水量對岩石單軸壓縮強度之影響......................18 2.3 泥岩的崩解與回脹特性..................................22 2.4 岩石相關力學行為......................................26 2.4.1 岩石受壓膨脹特性....................................26 2.4.2 圍壓對岩石力學行為影響..............................27 2.5 岩石強度破壞準則......................................32 2.5.1 Mohr-Coulomb破壞準則...............................32 2.5.2 Hoek-Brown破壞準則.................................33 2.5.3 Adachi破壞準則......................................34 2.5.4 Johnston破壞準則....................................35 2.6 動態試驗相關研究......................................37 2.6.1 反覆動態三軸試驗原理................................37 2.6.2 影響反覆荷重下動態行為的因子........................39 2.6.3 動態性質之介紹......................................40 第三章 試驗材料、方法及儀器...............................42 3.1 試驗材料及試體製作....................................42 3.2 含水量控制方法........................................46 3.3 高解析熱電子型場發射掃描式電子顯微鏡..................50 3.3.1 儀器介紹............................................50 3.3.2 試驗方法............................................50 3.4 消散耐久性試驗........................................52 3.4.1 儀器介紹............................................52 3.4.2 試驗方法............................................52 3.5 超音波試驗............................................54 3.5.1 儀器介紹............................................54 3.5.2 試驗方法............................................54 3.6 回脹試驗..............................................56 3.6.1 儀器介紹............................................56 3.6.2 試驗方法............................................56 3.7 單軸壓縮試驗..........................................58 3.7.1 儀器介紹............................................58 3.7.2 試驗方法............................................58 3.8 巴西試驗..............................................60 3.8.1 儀器介紹............................................60 3.8.2 試驗方法............................................60 3.9 靜態三軸壓縮試驗......................................61 3.9.1 儀器介紹............................................61 3.9.2 試驗方法............................................64 3.10 動態三軸壓縮試驗.....................................66 3.10.1 儀器介紹...........................................66 3.10.2 試驗方法...........................................66 第四章 結果與討論.........................................68 4.1 消散耐久性試驗........................................68 4.2 高解析熱電子型場發射掃描式電子顯微鏡..................69 4.3 超音波試驗............................................70 4.4 回脹試驗..............................................72 4.4.1 自由回脹試驗........................................72 4.4.2 不同壓力回脹試驗....................................74 4.5 單軸壓縮試驗..........................................77 4.6 巴西試驗..............................................85 4.7 三軸壓縮試驗..........................................88 4.7.1 不同含水量下三軸壓縮試驗............................88 4.7.2 圍壓與彈性模數關係..................................92 4.7.3 泥岩顆粒破壞行為....................................93 4.8 相關破壞準則..........................................95 4.8.1 Mohr-Coulomb破壞準則...............................95 4.8.2 Hoek-Brown破壞準則.................................101 4.8.3 Adachi破壞準則......................................105 4.8.4 Johnston破壞準則....................................109 4.8.5 破壞準則之適用性....................................113 4.8.6 泥岩之脆延性轉換壓力................................114 4.9 動態三軸壓縮試驗......................................115 4.9.1 不同含水量下動態三軸壓縮試驗........................115 4.9.2 反覆荷重次數之影響..................................123 4.9.3 反覆荷重後之強度及變形行為..........................130 第五章 結論與建議.........................................132 5.1 結論..................................................132 5.2 建議..................................................133 參考文獻..................................................134 附錄一....................................................140 附錄二....................................................144 附錄三....................................................145

    [1] 中國石油股份有限公司,台灣油礦探勘總處,「台南十萬分之一地質圖」,1989。
    [2] 何春蓀,「臺灣地質概論」,中華民國經濟部,台北,第118頁,1975。
    [3] 何春蓀,「台灣地體構造的演變-台灣地體構造圖說明書」,中華民國經濟部,台北,第39頁,1982。
    [4] 李德河、紀雲曜,「岩石試體之單壓強度特性研究」,1992岩盤工程研討會論文集,國立成功大學,台南,第71-84頁,1992。
    [5] 李德河、紀雲曜、田坤國,「泥岩基本特性及泥岩邊坡之保護措」施,地工技術,第48期,第35-47頁,1994。
    [6] 李德河、田坤國、紀雲曜、林宏明,「崇德水庫工程可行性評估-水庫淹沒區泥岩邊坡在反覆浸水狀態下坡面崩解現象之防治研究」,台灣省水利局研究專題報告,1996。
    [7] 邱德夫,「風化泥岩的力學特性研究」,國立成功大學土木工程研究所碩士論文,1987。
    [8] 林宏明,「軟岩在不同環境及應力條件下之力學行為」國立成功大學土木工程研究所博士論文,2000。
    [9] 林讚生,「台灣高雄周橋子滾水坪泥火山噴發の化學成份」,台灣地學紀事,第5卷,第6-7號,第51-55頁,1934。
    [10] 周墩堅,「泥岩與凝灰岩之回脹特性及剪力強度研究」,國立成功大學土木工程研究所碩士論文,1988。
    [11] 耿文溥,「台南以東丘陵區之地質」,經濟部中央地質調查所彙刊,第1號,第1-31頁,1981。
    [12] 莊長賢,「泥岩地區邊坡破壞原因之研究」,國立成功大學土木工程研究所碩士論文,1976。
    [13] 許琦,「反覆荷重下泥岩的動力特性之初步研究」,國立成功大學土木工程研究所碩士論文,1985。
    [14] 陳昭旭,「泥岩的時間依存行為」,國立成功大學土木工程研究所碩士論文,1988。
    [15] 陳煒鳴,「泥岩受含水量的影響研究及其於回填工程之應用」,國立成功大學土木工程研究所碩士論文,1996。
    [16] 葉信宏,「以中空三軸試驗探討泥岩材料之力學行為研究」,國立成功大學土木工程研究所碩士論文,1999。
    [17] 詹永盛,「泥岩地區公路邊坡保護措施調查及泥岩材料穩定處理之研究」,國立成功大學土木工程研究所碩士論文,1992。
    [18] 楊沂恩,「泥岩地區邊坡坡面保護新工法之研究」,國立成功大學土木工程研究所博士論文,2007。
    [19] 蔡鎰輝,「台灣西南部泥岩物化特性之研究」,國立成功大學礦冶及材料科學研究所碩士論文,1985。
    [20] 謝文元,「不同溫度、壓力下泥岩之力學行為研究」,國立成功大學土木工程研究所碩士論文,1995。
    [21] 蕭達鴻,「夯實泥岩力學性與滲透性之研究」,高雄工商專校學報,第23期,第181-206頁,1993。
    [22] Adachi, T., Ogawa, T., and Hayashi, M., “Mechanical properties of soft rock and rock mass,” Proceedings 10th ICSMFE, Vol. 1, pp.527-530, 1981.
    [23] ASTM, “Standard practices for preparing rock core specimens and determining dimensional and shape tolerances,” Annual Book of ASTM Standard, Designation D4543-04, 2000.
    [24] Bieniawski, Z.T., “Mechanism of brittle fracture rock; PartⅡ: Experimental studies,” International Journal of Rock Mechanics and Mining Sciences, Vol. 4, No. 4, pp.407-423,1967.
    [25] Bieniawski, Z.T., Rock mechanics design in mining and tunneling, balkema, Rotterdam, pp.37-49, 1984.
    [26] Bjerrum, L.,“Progressive failure in slopes of overconsolidated plastic clay and clay shales,”Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, pp.1-49, 1967.
    [27] Blatt, H., Middleton, G. and Murray, R., Origin of sedimentary rocks, prentice-hall, Englewood Cliffs, 1972.
    [28] Byerlee, J.D., “Brittle-ductile transition in rocks,” Journal of Geophysical Research, Vol.73, No.14, pp.4741-4750, 1968.
    [29] Chiu, H.K., Geotechnical properties and numerical analyses for socketed pile design in weak rock, Ph.D. thesis, Department of Civil Engineering, Monash University, Australia, 1981.
    [30] Colback, P.S.B. and Wiid, B.L., “The influence of moisture content on the compressive strength of rocks,” Proceedings 3rd Canada Rock Mechanical Symposium, Toronto, pp.65-83, 1965.
    [31] Corkum, A.G. and Martin, C.D.,“The mechanical behaviour of weak mudstone(Opalinus clay) at low stresses,” International Journal of Rock Mechanics & Mining Sciences, Vol.44, pp.196-209, 2007.
    [32] Donath, F.A.,“Some information squeezed out of a rock,” American Scientist, Vol.58, pp.54-72, 1970.
    [33] Feda, J., Mechanics of particulate materials-the principles, Elsevier Scientific Publishing Company, Amsterdam, 1982.
    [34] Gamble, J.C., Durability–plasticity classification of shales and other argillaceous rocks. Ph.D. thesis, University of Illinois, 1971.
    [35] Gillot, J.E., Clay in engineering geology, Elsevier Publishing Company, Amsterdam, 1968.
    [36] Goodman, R.E., Introduction to rock mechanics, John Wiley & Sons, New York, U.S.A, Second Edition, 1989.
    [37] Griffith, A.A., “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London Series A, pp.163-197, 1921.
    [38] Hardin, B.O. and Drnevich, V.P., “Shear Modulus and Damping in Soil: Design Equations and Curves,” Journal of the Soil Mechanics and Foundations, ASCE, Vol. 98, No.SM7, July, 1972.
    [39] Hoek, E. and Brown, E.T., Underground excavations in rock, The Institution of Mining and Metallurgy, London, 1980.
    [40] Holtz, R.D. and Kovacs, W.D., An introduction to geotechnical engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
    [41] ISRM,“Basic geotechnical description of rock masses, ISRM commission on classification of rocks and rock masses,” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol.18, pp.85-110, 1981.
    [42] Johnston, I.W. and Chiu, H.K.,“Strength of weathered melbourne mudstone,” Journal of Geotechnical Engineering, ASCE, Vol.110, No.7, pp.875-898, 1984.
    [43] Karman, Th.von, “Festigkeitsversuche unter allseitigem druck,” Deutscher Ingenieure, Vol.55, pp.1749-1757, 1911.
    [44] Lama, R.D. and Vutukuri, V.S., Handbook on mechanical properties of rock, Vol.2, Transactions Technical Publications, pp.57-59, 1978.
    [45] Lambe, T.W.,“The engineering behavior of compacted clay,” Journal of the Soil Mechanics and Foundations Divison, ASCE, Vol.84, No. SM2,Proceedings Paper 1654, pp.1-34, 1958.
    [46] Lee, D.H., Tien, K.G. and Juang, C.H., “Full-scale field experimentation of a new technique for protecting mudstone slope, Taiwan,”Engineering Geology, Vol.42, No.1, pp.51-63, 1996.
    [47] Lin, M.L. and Hung, J.J.“The influence of moisture content on mechanical properties of some sedimentary rocks in Taiwan,” Proceedings of the 7th Southeast Asian Geotechnical Conference, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, 1982.
    [48] Mogi, K., “Pressure dependence of rock strength and transition form brittle fracture to ductile flow,” Bulletin Earthquake Research Institute, Tokyo University, Vol.44, pp.215-232, 1966.
    [49] Mohamed, A.EL-S. and Ossama, M.M., “On measuring swelling pressure by two methods,” 7th Regional Conference Africa, SMFE, pp.775-783, 1980.
    [50] Obert, L. Windes, S.L. and Duvall, W.I., Standardized tests for determining the physical properties of mine rock, U.S.B.M.R.I. 3891, 1946.
    [51] Oliveira, R.,“Weak rock materials,”Proceeding of the 26th Annual Conference of Engineering Group of the Geological Society, Rotterdam, pp.5-15, 1993.
    [52] Pettijohn, F.J., Sedimentary rock, Harper and Row. New York, 1975.
    [53] Porter, A.A. and Nelson, J.D., “Strain controlled testing of expansive soils,” Proceedings 4th International Conference on Expansive Soils, Denver, ASCE, pp.34-44, 1980.
    [54] Schroeder, C. and Verbrugge, J.C.,“Unsaturated rock mechanics applied to a low-porosity shale,” Engineering Geology, Vol.97, pp.42-52, 2008.
    [55] Seed, H.B. and Lee, K.L., “Liquefaction of saturated sands during cyclic loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No.SM6, pp.105-134, 1966.
    [56] Stow, D.A.V.“Fine-grained sediments: terminology,” Quarterly Journal of Engineering Geology and Hydrogeology, Vol.14, No.4, pp.243-244, 1981.
    [57] Taylor, R.K. and Cripps, J.C., Weathering effects: slopes in mudrocks and over-consolidated clay, Anderson, M.G. and Richards K.S., Geotechnical Engineering and Geomorphology, John Wiley & Sons, 1987.
    [58] Vásárhelyi, B.,“Some observations regarding the strength and deformability of sandstones in case of dry and saturated conditions”, Bulletin of Engineering Geology, Vol. 62, pp.245–249, 2003.
    [59] Vutukuri, V.S., Lama, R.D. and Saluja, S.S., Handbook on mechanical properties of rocks, Transactions Technical Publications, pp.50-57, 1974.
    [60] Wang, Y.,“Clay mineralogy of Gutingkeng mudstone, southern Taiwan,” Science Reports of The National Taiwan University, ACTA Geological Taiwanica, No.14, pp.9-19, 1970.
    [61] Wang, Y., “Continental margin rifting and cenozoic tectonics around Taiwan,” Memoir of the Geology Society China, No.9, pp.227-240, 1987.
    [62] 佐々木康、谷口榮一、唐沢安秋,“粘土の動的強度”,土木技術資料,第422-428頁,1980。

    下載圖示 校內:2010-08-22公開
    校外:2012-08-22公開
    QR CODE