| 研究生: |
張為哲 Chang, Wei-Che |
|---|---|
| 論文名稱: |
氮化鋁鎵熱氧化生成氧化鋁鎵製成蕭特基紫外光偵測器之光電特性研究 The Fabrication and Characterization of β-(AlxGa1-x)2O3 Schottky Barrier Diode Ultraviolet Photodetector by Thermal Oxidation |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 氮化鋁鎵 、氧化鋁鎵 、高溫熱氧化 、光響應 、鑑別率 、蕭特基二極體 |
| 外文關鍵詞: | AlGaN, β-(AlxGa1-x)2O3, thermal oxidation, responsivity, rejection ratio, Schottky barrier diode |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是探討透過爐管氧化製程將藍寶石基板(sapphire)上磊晶製作出來的氮化鋁鎵(AlxGa1-xN)試片其中鋁含量為x=0.27,在高溫熱氧化(oxidation)的過程中將其氧化成氧化鋁鎵β-(AlxGa1-x)2O3。並且成功的製作出高鑑別率(high rejection ratio >1000 @220nm/@360nm)短波長選擇性蕭特基二極體(SBD)光偵測器。
為了探討高溫氧化製程中不同溫度不同時間的條件下,對氮化鋁鎵氧化層的厚度與光電特性變化差異,本論文採用爐管在環境溫度850℃、900℃、950℃氧氣流量10000 sccm 下分別進行1、2、3 小時不同時間的高溫氧化製程。並且透過一系列基礎分析來對氧化物做基礎研究。如:利用掃描電子顯微鏡(SEM)確認其氧化層厚度;X射線繞射分析儀(XRD)進行衍射峰的交叉比對氮化鋁鎵/氧化鋁鎵/氧化鎵的晶相位置,最後是X射線光電子能譜儀(XPS)來作為分析元素化學態和電子態的定量分析。接續氧化製程後沉積鎳(Ni)/金(Au) (4nm/10nm)作為氧化鋁鎵蕭特基接面金屬-半導體接面金屬。並透過黃光微影與感應耦合電漿-離子蝕刻(ICP),蝕刻出高台並使N型氮化鎵(n-GaN)裸露出來。最後蒸鍍上金屬襯墊Ti/Al(30nm/300nm)即完成元件製程。
在光電特性中,元件在不同製備溫度條件下其漏電流最低可達10-6 A/cm2,而串聯電阻(TLM)在850℃、900℃時為10-4 Ohms/cm2,但在950℃時提升為10-3 Ohms/cm2,表明金-半接面的串聯電阻在熱氧化的過程中會隨著溫度與時間的增加而增加。而在光響應特性中,以氧化溫度950℃氧化時間1小時所體現出來的光響應鑑別率(rejection ratio)最佳。
關鍵字:氮化鋁鎵、氧化鋁鎵、高溫熱氧化、光響應、鑑別率、蕭特基二極體
In this study, we propose a β-(AlxGa1-x)2O3 (x=0.27) Schottky barrier diode ultraviolet photodetector with furnace tube oxidation and we using 300nm AlGaN type A structure and different high temperature thermal oxidation condition to made AlGaN thin film convent to β-(AlxGa1-x)2O3 .In this work our device responsivity measurement results show the great PCDR and rejection ration can arrived 3 order it’s mean rejection ratio>1000 @220nm/@360nm, with oxidation condition 950℃ 1hr.Thus, we successfully produced a SBD ultraviolet photodetector with high wavelength selectivity.
Key words: AlGaN, β-(AlxGa1-x)2O3, thermal oxidation, responsivity, rejection ratio, Schottky barrier diode
[1]M. Lin, Z. Ma, F. Huang, Z. F. Fan, L. Allen, and H. Morkoc, "Low resistance ohmic contacts on wide band‐gap GaN," Applied Physics Letters, vol. 64, no. 8, pp. 1003-1005, 1994.
[2]Z. Galazka, "β-Ga2O3 for wide-bandgap electronics and optoelectronics," Semiconductor Science and Technology, vol. 33, no. 11, p. 113001, 2018.
[3]A. A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Hwang, and H. Zhao, "Band offsets of (100) β-(AlxGa1− x) 2O3/β-Ga2O3 heterointerfaces grown via MOCVD," Applied Physics Letters, vol. 117, no. 25, p. 252105, 2020.
[4]J. Xu, W. Zheng, and F. Huang, "Gallium oxide solar-blind ultraviolet photodetectors: a review," Journal of Materials Chemistry C, vol. 7, no. 29, pp. 8753-8770, 2019.
[5]Y. A. Goldberg, "Semiconductor near-ultraviolet photoelectronics," Semiconductor science and technology, vol. 14, no. 7, p. R41, 1999.
[6]R. Müller-Xing, Q. Xing, and J. Goodrich, "Footprints of the sun: memory of UV and light stress in plants," Frontiers in plant science, vol. 5, p. 474, 2014.
[7]Z. Alaie, S. M. Nejad, and M. Yousefi, "Recent advances in ultraviolet photodetectors," Materials Science in Semiconductor Processing, vol. 29, pp. 16-55, 2015.
[8]H. Amano, T. Asahi, and I. Akasaki, "Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer," Japanese journal of applied physics, vol. 29, no. 2A, p. L205, 1990.
[9]M. A. Khan, J. Kuznia, D. Olson, J. Van Hove, M. Blasingame, and L. Reitz, "High‐responsivity photoconductive ultraviolet sensors based on insulating single‐crystal GaN epilayers," Applied Physics Letters, vol. 60, no. 23, pp. 2917-2919, 1992.
[10]W. Moses and S. E. Derenzo, "Design studies for a PET detector module using a PIN photodiode to measure depth of interaction," IEEE Transactions on Nuclear Science, vol. 41, no. 4, pp. 1441-1445, 1994.
[11]E. Monroy et al., "High-performance GaN pn junction photodetectors for solar ultraviolet applications," Semiconductor science and technology, vol. 13, no. 9, p. 1042, 1998.
[12]C. Chen et al., "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts," IEEE Photonics Technology Letters, vol. 13, no. 8, pp. 848-850, 2001.
[13]Q. Chen et al., "Schottky barrier detectors on GaN for visible–blind ultraviolet detection," Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, 1997.
[14]J. Zhou et al., "Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization," Applied physics letters, vol. 94, no. 19, p. 191103, 2009.
[15]E. Hellman, "The polarity of GaN: a critical review," Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 3, 1998.
[16]M. Schubert et al., "Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals," Physical Review B, vol. 93, no. 12, p. 125209, 2016.
[17]W. Schottky, "Halbleitertheoerie der sperrschicht," Naturwissenschaften, vol. 26, p. 843, 1938.
[18]E. H. Rhoderick, "Metal-semiconductor contacts," IEE Proceedings I Communications, Speech and Vision [see also IEE Proceedings-Communications], vol. 1, no. 129, p. 1, 1982.
[19]J. H. Werner and H. H. Güttler, "Barrier inhomogeneities at Schottky contacts," Journal of applied physics, vol. 69, no. 3, pp. 1522-1533, 1991.
[20]K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates," IEEE Electron Device Lett, vol. 34, no. 4, pp. 493-495, 2013.
[21]E. Ahmadi, Y. Oshima, F. Wu, and J. S. Speck, "Schottky barrier height of Ni to β-(AlxGa1− x) 2O3 with different compositions grown by plasma-assisted molecular beam epitaxy," Semiconductor Science and Technology, vol. 32, no. 3, p. 035004, 2017.
[22]W.-C. Lien, D.-S. Tsai, D.-H. Lien, D. G. Senesky, J.-H. He, and A. P. Pisano, "4H–SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors in Operation of 450oC," IEEE electron device letters, vol. 33, no. 11, pp. 1586-1588, 2012.
[23]W. Friedrich, P. Knipping, and M. Laue, "Interferenzerscheinungen bei roentgenstrahlen," Annalen der Physik, vol. 346, no. 10, pp. 971-988, 1913.
[24]J. Epp, "X-ray diffraction (XRD) techniques for materials characterization," in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 81-124.
[25]S. A. Speakman, "Introduction to high resolution x-ray diffraction of epitaxial thin films," MIT Center for Materials Science and Engineering, Cambridge, 2012.
[26]J. F. Watts and J. Wolstenholme, An introduction to surface analysis by XPS and AES. John Wiley & Sons, 2019.
[27]A. A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Hwang, and H. Zhao, "MOCVD growth of β-phase (AlxGa1− x) 2O3 on (2¯ 01) β-Ga2O3 substrates," Applied Physics Letters, vol. 117, no. 14, p. 142107, 2020.
[28]M. Kneiß et al., "Growth, structural and optical properties of coherent κ-(Al x Ga1− x) 2O3/κ-Ga2O3 quantum well superlattice heterostructures," APL Materials, vol. 8, no. 5, p. 051112, 2020.
[29]T. Uchida, R. Jinno, S. Takemoto, K. Kaneko, and S. Fujita, "Characterization of band offset in α-(Al x Ga 1-x) 2 O 3/α-Ga 2 O 3 heterostructures," in 2016 Compound Semiconductor Week (CSW)[Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), 2016: IEEE, pp. 1-2.
[30]Q. Cao, L. He, H. Xiao, X. Feng, Y. Lv, and J. Ma, "β-Ga2O3 epitaxial films deposited on epi-GaN/sapphire (0001) substrates by MOCVD," Materials Science in Semiconductor Processing, vol. 77, pp. 58-63, 2018.
[31]W. Weng et al., "An (AlxGa1-x)2O3 Metal-Semiconductor-Metal VUV Photodetector," IEEE Sensors Journal, vol. 11, no. 9, pp. 1795-1799, 2011.
[32]Z. Feng et al., "Band alignment of SiO2/(AlxGa1-x) 2O3 (0≤ x≤ 0.49) determined by X-ray photoelectron spectroscopy," Applied Surface Science, vol. 434, pp. 440-444, 2018.
[33]H.-J. Lee et al., "Bandgap modulation and electrical characteristics of (AlxGa1− x) 2O3/4H-SiC thin film heterostructures," Thin Solid Films, vol. 754, p. 139276, 2022.
[34]J. Du, J. Zhao, Q. Luo, Z. Yu, J. Xia, and M. Yang, "Growth and Characteristics Analysis of the Thermal Oxide Grown on Gallium Nitride," in 2009 Symposium on Photonics and Optoelectronics, 2009: IEEE, pp. 1-3.
[35]G. Naresh-Kumar et al., "Origin of Red Emission in β‐Ga2O3 Analyzed by Cathodoluminescence and Photoluminescence Spectroscopy," physica status solidi (b), vol. 258, no. 2, p. 2000465, 2021.
[36]H. Gao et al., "Depth-resolved cathodoluminescence and surface photovoltage spectroscopies of gallium vacancies in β-Ga2O3 with neutron irradiation and forming gas anneals," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 39, no. 5, p. 052205, 2021.
[37]S. Kumar, C. Tessarek, S. Christiansen, and R. Singh, "A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique," Journal of alloys and compounds, vol. 587, pp. 812-818, 2014.
[38]R. M. Cibils and R. H. Buitrago, "Forward I‐V plot for nonideal Schottky diodes with high series resistance," Journal of applied physics, vol. 58, no. 2, pp. 1075-1077, 1985.
[39]H. Sheoran, B. Tak, N. Manikanthababu, and R. Singh, "Temperature-dependent electrical characteristics of Ni/Au vertical Schottky barrier diodes on β-Ga2O3 epilayers," ECS Journal of Solid State Science and Technology, vol. 9, no. 5, p. 055004, 2020.
[40]A. Bhuiyan, A. Martinez, and D. Esteve, "A new Richardson plot for non-ideal schottky diodes," Thin Solid Films, vol. 161, pp. 93-100, 1988.
校內:2027-08-17公開