簡易檢索 / 詳目顯示

研究生: 林法茹
Lin, Fa-Ju
論文名稱: 雙嵌段共聚物在混摻系統中均聚物鏈段分散性對薄膜中水平圓柱和六邊形穿孔層的有序性及共存的影響
Effects of Chain Length Dispersity on the Spatial Order and Coexistence of Parallel Cylinders and Hexagonally Perforated Layers in Block Copolymer Blend Films
指導教授: 孫亞賢
Sun, Ya-Sen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 127
中文關鍵詞: 雙嵌段共聚物高分子物性低掠角小角度X光散射儀(GISAXS)高分子多分佈指數(PDI)
外文關鍵詞: Block Copolymers, polymer physics, GISAXS, polydispersity index (PDI)
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙嵌段共聚物(block copolymers)在高分子科學中因其自組裝特性和多樣的微相結構而備受關注。這些特性使得它們在奈米結構材料領域有著廣泛的應用前景。本研究聚焦於雙嵌段共聚物聚(苯乙烯-b-甲基丙烯酸甲酯)(PS21k-b-PMMA21k)與均聚物聚苯乙烯(PS6k)的混摻系統,特別是在混摻比例75/25時,其微相結構顯示出最為豐富的多樣性。了解並控制這些微相結構對於製備具有功能性的奈米材料至關重要。
    本研究旨在通過調整均聚物Polystyrene(PS)的分散性(Polydispersity Index, PDI),觀察混摻薄膜內部微相結構的變化及由自由表面至基材的平面結構表徵。希望通過改變PDI來實現對微相結構的精確控制,並探討介穩態結構的穩定性,以期為高性能材料的設計提供理論依據。
    選取PDI=1.05、1.33、1.50三種具有不同PDI的PS均聚物,數量平均分子量介於6.0~6.1k,與雙嵌段共聚物PS21k-b-PMMA21k按照75/25的比例混摻,製備成薄膜。利用低掠角小角度X光散射儀(GISAXS)、原子力顯微鏡(AFM)及掃描式電子顯微鏡(SEM)等技術對薄膜內部的微相結構進行表徵分析。再進一步分析結構定量化,利用公式擬合尋找變化趨勢。
    結果顯示,無論均聚物PDI的高低,表面均觀察到穿孔層結構。內部結構隨PDI的增加呈現出不同的變化趨勢:從低PDI的水平圓柱結構,到中等PDI時的水平圓柱和穿孔層共存,再到高PDI時的穿孔層結構。此外,隨著PDI的增加,結構的有序性逐漸降低。研究發現,加入適度PDI的均聚物可以提高介穩態結構的穩定性,但過大PDI的均聚物則會破壞結構的有序性。
    發現均聚物PDI的選擇對於薄膜結構的轉變及有序性的調控至關重要。本論文提供了通過改變均聚物PDI來控制微相結構和介穩態結構穩定性的概念,對於製備具有功能性的奈米材料有指導意義。

    This study investigates the blend system of the diblock copolymer poly(styrene-b-methyl methacrylate) (PS21k-b-PMMA21k) and the homopolymer polystyrene (PS6k) at a 75/25 ratio, focusing on the influence of the polydispersity index (PDI) of the homopolymer on microphase structures. The goal is to control these microphase structures and explore the stability of metastable states by adjusting the PDI.
    Methods used include grazing-incidence small-angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) to characterize the internal structures of films prepared with homopolymers of different PDI (1.05, 1.33, 1.50).
    Results indicate that all films show perforated layer structures on the surface regardless of PDI. Internal structures transition from horizontal cylinders at low PDI, to a coexistence of horizontal cylinders and perforated layers at medium PDI, to perforated layers at high PDI. Structural order decreases with increasing PDI.
    The study concludes that selecting the appropriate PDI is important for the transformation of the film structure and the adjustment of the ordering. The findings provide insights into controlling microphase structures and the stability of metastable states, offering guidance for the design of functional nanomaterials.

    摘要 I Extended Abstract III 誌謝 VIII 目錄 X 表目錄 XV 圖目錄 XVI 第1章 緒論 1 1-1 前言 1 1-2 高分子嵌段共聚物 2 1-2-1 嵌段共聚物(block copolymer, BCP) 2 1-2-2 塊材系統(bulk system)之自組裝 3 1-2-3 膜系統(film system)之自組裝 5 1-2-3-1 厚度效應 6 1-2-3-2 表面場 7 1-2-3-1 空間侷限性 9 1-3 控制自組裝微結構形貌 10 1-3-1 特殊結構高分子 10 1-3-2 特殊樣品製備過程 12 1-3-3 共聚物之混摻(Blend)系統 13 1-3-3-1 聚合物分散性(Polydispersity Index, PDI) 15 1-4 控制高分子薄膜結構之排向 17 1-4-1 基材中性化 19 1-4-2 基材處理 22 1-4-3 頂部塗層 23 1-5 研究背景與動機 24 第2章 實驗 26 2-1 實驗材料 26 2-1-1 高分子材料 26 2-1-2 溶劑 26 2-1-3 基材 26 2-2 實驗儀器 27 2-3 實驗設計與樣品製備 27 2-3-1 基材前處理 27 2-3-2 紫外光照射 28 2-3-3 高分子薄膜製備 28 2-3-4 紫外光照光交聯 29 2-3-5 雙嵌段共聚物的自組裝-熱退火 29 2-3-6 氧氣離子電漿蝕刻 30 2-4 儀器原理 31 2-4-1 光學顯微鏡(OM) 31 2-4-2 掃描式電子顯微鏡(SEM) 31 2-4-3 原子力顯微鏡(AFM) 33 2-4-4 低掠角小角度X光散射(GISAXS) 33 2-4-4-1 圓柱(Cylinder, C) 39 2-4-4-2 穿孔層(Perforated Layers, PLs//) 43 2-4-4-3 雙連續螺旋結構(double gyroid, DG) 45 第3章 結果與討論 47 3-1 熱退火條件對薄膜相行為影響 47 3-2 熱退火歷史(annealing history)對薄膜相行為影響 49 3-3 均聚物PDI對相行為的影響 51 3-3-1 PDI=1.05之薄膜結構分析 51 3-3-1-1 GISAXS倒空間定性分析 52 3-3-1-2 GISAXS倒空間定量分析 54 3-3-2 PDI=1.33之薄膜結構分析 59 3-3-2-1 GISAXS倒空間定性分析 60 3-3-2-2 GISAXS倒空間定量分析 62 3-3-3 PDI=1.50之薄膜結構分析 66 3-3-3-1 GISAXS倒空間定性分析 67 3-3-3-2 GISAXS倒空間定量分析 68 3-3-4 表面穿孔層厚度與蝕刻時間關係 72 3-3-4-1 PDI=1.05 72 3-3-4-2 PDI=1.33 75 3-3-4-3 PDI=1.50 78 3-4 統整 80 第4章 結論 84 第5章 參考文獻 86 第6章 附錄 94 6-1 氧氣離子電漿蝕刻薄膜速率 94 6-2 X光穿透薄膜深度與投影長度 94 6-3 利用紫外光照射作基材改質 95 6-3-1 高分子利用紫外光照射作基材改質 95 6-3-2 不同分子量及體積比的PS-b-P4VP照紫外光 97 6-3-3 不同膜厚PS-b-P4VP照紫外光 97 6-3-4 不同溶劑的PS-b-P4VP 98 6-3-5 表面能測量 98

    [1] Mai, Y. and Eisenberg, A. Self-assembly of block copolymers. Chemical Society Reviews 2012, 41, 5969-5985.
    [2] Cai, D.; Li, J.; Ma, Z.; Gan, Z.; Shao, Y.; Xing, Q.; Tan, R. and Dong, X.-H. Effect of Molecular Architecture and Symmetry on Self-Assembly: A Quantitative Revisit Using Discrete ABA Triblock Copolymers. ACS Macro Letters 2022, 11, 555-561.
    [3] Bae, S. and Yager, K. G. Chain Redistribution Stabilizes Coexistence Phases in Block Copolymer Blends. ACS Nano 2022, 16, 17107-17115.
    [4] Doerk, G. S. and Yager, K. G. Beyond Native Block Copolymer Morphologies. Molecular Systems Design & Engineering 2017, 2, 518-538.
    [5] Matsen, M. W. Polydispersity-Induced Macrophase Separation in Diblock Copolymer Melts. Physical Review Letters 2007, 99, 148304.
    [6] Lynd, N. A.; Meuler, A. J. and Hillmyer, M. A. Polydispersity and Block Copolymer Self-Assembly. Progress in Polymer Science 2008, 33, 875-893.
    [7] Doerk, G. S. and Yager, K. G. Diversifying Self-Assembled Phases in Block Copolymer Thin Films via Blending. Physical Review Materials 2023, 7, 120301.
    [8] Doerk, G. S.; Cheng, J. Y.; Singh, G.; Rettner, C. T.; Pitera, J. W.; Balakrishnan, S.; Arellano, N. and Sanders, D. P. Enabling Complex Nanoscale Pattern Customization Using Directed Self-Assembly. Nature Communications 2014, 5, 5805.
    [9] Greil, S.; Rahman, A.; Liu, M. and Black, C. T. Gas Transport Selectivity of Ultrathin, Nanoporous, Inorganic Membranes Made from Block Copolymer Templates. Chemistry of Materials 2017, 29, 9572-9578.
    [10] Liapis, A. C.; Rahman, A. and Black, C. T. Self-Assembled Nanotextures Impart Broadband Transparency to Glass Windows and Solar Cell Encapsulants. Applied Physics Letters 2017, 111,
    [11] Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C. and Quéré, D. Antifogging Abilities of Model Nanotextures. Nature Materials 2017, 16, 658-663.
    [12] Hasegawa, H., "Block Copolymers and Miktoarm Star-Branched Polymers," in Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications, N. Hadjichristidis and A. Hirao Eds. Tokyo: Springer Japan, 2015, pp. 843-859.
    [13] Bates, F. S. and Fredrickson, G. H. Block Copolymers—Designer Soft Materials. Physics Today 1999, 52, 32-38.
    [14] Matsen, M. W. and Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29, 1091-1098.
    [15] Matsen, M. W. and Schick, M. Stable and Unstable Phases of a Linear Multiblock Copolymer Melt. Macromolecules 1994, 27, 7157-7163.
    [16] Matsen, M. W. and Schick, M. Microphase Separation in Starblock Copolymer Melts. Macromolecules 1994, 27, 6761-6767.
    [17] Matsen, M. W. and Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt. Physical Review Letters 1994, 72, 2660-2663.
    [18] Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K. and Mortensen, K. Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram Near the Order-Disorder Transition. Macromolecules 1995, 28, 8796-8806.
    [19] Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J.; Zvelindovsky, A. V. and Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Physical Review Letters 2002, 89, 035501.
    [20] Sohn, K. E.; Kojio, K.; Berry, B. C.; Karim, A.; Coffin, R. C.; Bazan, G. C.; Kramer, E. J.; Sprung, M. and Wang, J. Surface Effects on the Thin Film Morphology of Block Copolymers with Bulk Order−Order Transitions. Macromolecules 2010, 43, 3406-3414.
    [21] Horvat, A.; Lyakhova, K. S.; Sevink, G. J.; Zvelindovsky, A. V. and Magerle, R. Phase Behavior In Thin Films of Cylinder-Forming ABA block Copolymers: Mesoscale Modeling. The Journal of Chemical Physics 2004, 120, 1117-26.
    [22] Lyakhova, K. S.; Sevink, G. J.; Zvelindovsky, A. V.; Horvat, A. and Magerle, R. Role of Dissimilar Interfaces in Thin Films of Cylinder-Forming Block Copolymers. The Journal of Chemical Physics 2004, 120, 1127-37.
    [23] Hu, H.; Gopinadhan, M. and Osuji, C. O. Directed Self-Assembly of Block Copolymers: a Tutorial Review of Strategies for Enabling Nanotechnology with Soft Matter. Soft Matter 2014, 10, 3867-3889.
    [24] Li, S.; Jiang, Y. and Chen, J. Z. Y. Morphologies and Phase Diagrams of ABC Star Triblock Copolymers Confined in a Spherical Cavity. Soft Matter 2013, 9, 4843-4854.
    [25] Lee, S.; Bluemle, M. J. and Bates, F. S. Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts. Science 2010, 330, 349-353.
    [26] Kim, K.; Schulze, M. W.; Arora, A.; Lewis, R. M.; Hillmyer, M. A.; Dorfman, K. D. and Bates, F. S. Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy. Science 2017, 356, 520-523.
    [27] Chen, S.-C.; Kuo, S.-W.; Jeng, U. S.; Su, C.-J. and Chang, F.-C. On Modulating the Phase Behavior of Block Copolymer/Homopolymer Blends via Hydrogen Bonding. Macromolecules 2010, 43, 1083-1092.
    [28] Toth, K.; Bae, S.; Osuji, C. O.; Yager, K. G. and Doerk, G. S. Film Thickness and Composition Effects in Symmetric Ternary Block Copolymer/Homopolymer Blend Films: Domain Spacing and Orientation. Macromolecules 2021, 54, 7970-7986.
    [29] Yager, K. G.; Lai, E. and Black, C. T. Self-Assembled Phases of Block Copolymer Blend Thin Films. ACS Nano 2014, 8, 10582-10588.
    [30] Nowak, S. R.; Tiwale, N.; Doerk, G. S.; Nam, C.-Y.; Black, C. T. and Yager, K. G. Responsive blends of block copolymers stabilize the hexagonally perforated lamellae morphology. Soft Matter 2023, 19, 2594-2604.
    [31] Park, W. I.; Kim, Y.; Jeong, J. W.; Kim, K.; Yoo, J.-K.; Hur, Y. H.; Kim, J. M.; Thomas, E. L.; Alexander-Katz, A. and Jung, Y. S. Host-Guest Self-Assembly in Block Copolymer Blends. Scientific Reports 2013, 3, 3190.
    [32] Hashimoto, T.; Tanaka, H. and Hasegawa, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules 1990, 23, 4378-4386.
    [33] Tanaka, H.; Hasegawa, H. and Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 1. Solubilization of Low Molecular weight Homopolymers. Macromolecules 1991, 24, 240-251.
    [34] Choi, C.; Ahn, S. and Kim, J. K. Diverse Morphologies of Block Copolymers by Blending with Homo (and Co) Polymers. Macromolecules 2020, 53, 4577-4580.
    [35] Winey, K. I.; Thomas, E. L. and Fetters, L. J. Ordered Morphologies in Binary Blends of Diblock Copolymer and Homopolymer and Characterization of Their Intermaterial Dividing Surfaces. The Journal of Chemical Physics 1991, 95, 9367-9375.
    [36] Hong, J. W.; Chang, J. H.; Hung, H. H.; Liao, Y. P.; Jian, Y. Q.; Chang, I. C. Y.; Huang, T. Y.; Nelson, A.; Lin, I. M.; Chiang, Y. W. and Sun, Y. S. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene-block-poly(methyl methacrylate). Macromolecules 2022, 55, 2130-2147.
    [37] Noro, A.; Iinuma, M.; Suzuki, J.; Takano, A. and Matsushita, Y. Effect of Composition Distribution on Microphase-Separated Structure from BAB Triblock Copolymers. Macromolecules 2004, 37, 3804-3808.
    [38] Lynd, N. A. and Hillmyer, M. A. Influence of Polydispersity on the Self-Assembly of Diblock Copolymers. Macromolecules 2005, 38, 8803-8810.
    [39] Wang, H. S.; Kim, K. H. and Bang, J. Thermal Approaches to Perpendicular Block Copolymer Microdomains in Thin Films: A Review and Appraisal. Macromolecular Rapid Communications 2019, 40, 1800728.
    [40] Marshall, S. J.; Bayne, S. C.; Baier, R.; Tomsia, A. P. and Marshall, G. W. A Review of Adhesion Science. Dental Materials 2010, 26, e11-e16.
    [41] Ji, S.; Liu, G.; Zheng, F.; Craig, G. S. W.; Himpsel, F. J. and Nealey, P. F. Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends. Advanced Materials 2008, 20, 3054-3060.
    [42] Guo, R.; Kim, E.; Gong, J.; Choi, S.; Ham, S. and Ryu, D. Y. Perpendicular Orientation of Microdomains in PS-b-PMMA Thin Films on the PS Brushed Substrates. Soft Matter 2011, 7, 6920-6925.
    [43] Ryu, D. Y.; Shin, K.; Drockenmuller, E.; Hawker, C. J. and Russell, T. P. A Generalized Approach to the Modification of Solid Surfaces. Science 2005, 308, 236-239.
    [44] Bang, J.; Bae, J.; Löwenhielm, P.; Spiessberger, C.; Given-Beck, S. A.; Russell, T. P. and Hawker, C. J. Facile Routes to Patterned Surface Neutralization Layers for Block Copolymer Lithography. Advanced Materials 2007, 19, 4552-4557.
    [45] Oh, J.; Suh, H. S.; Ko, Y.; Nah, Y.; Lee, J.-C.; Yeom, B.; Char, K.; Ross, C. A. and Son, J. G. Universal Perpendicular Orientation of Block Copolymer Microdomains Using a Filtered Plasma. Nature Communications 2019, 10, 2912.
    [46] Suh, H. S.; Kang, H.; Liu, C.-C.; Nealey, P. F. and Char, K. Orientation of Block Copolymer Resists on Interlayer Dielectrics with Tunable Surface Energy. Macromolecules 2010, 43, 461-466.
    [47] Wu, M.-L.; Wang, D. and Wan, L.-J. Directed Block Copolymer Self-Assembly Implemented via Surface-Embedded Electrets. Nature Communications 2016, 7, 10752.
    [48] Durand, W. J.; Carlson, M. C.; Maher, M. J.; Blachut, G.; Santos, L. J.; Tein, S.; Ganesan, V.; Ellison, C. J. and Willson, C. G. Experimental and Modeling Study of Domain Orientation in Confined Block Copolymer Thin Films. Macromolecules 2016, 49, 308-316.
    [49] Sun, Y.-S.; Jian, Y.-Q.; Yang, S.-T.; Chen, C.-Y. and Lin, J.-M. Morphologies of Surface Perforations and Parallel Cylinders Coexisting in Terraced Films of Block Copolymer/Homopolymer Blends with Oxygen Plasma Etching. Langmuir 2023, 39, 16284-16293.
    [50] Yue, Z.; Easan, S. and Takeji, H. SAXS Analysis of the Order−Disorder Transition and the Interaction Parameter of Polystyrene-block-poly(methyl methacrylate). Macromolecules 2008, 41, 9948-9951.
    [51] Brandrup, J.; Immergut, E. H. and McDowell, W., Polymer Handbook, 2d ed. New York: Wiley (in English), 1975.
    [52] Zhang, X.; He, Q.; Chen, Q.; Nealey, P. F. and Ji, S. Directed Self-Assembly of High χ Poly(styrene-b-(lactic acid-alt-glycolic acid)) Block Copolymers on Chemical Patterns via Thermal Annealing. ACS Macro Letters 2018, 7, 751-756.
    [53] Glassner, A. (2000) Soap Bubbles: Part 2. 99-109. Available: https://doi.ieeecomputersociety.org/10.1109/38.888023
    [54] Chowdhury, M., "Thin Polymer Films out of Thermodynamic Equilibrium," Dissertation, Albert-Ludwigs-Universität Freiburg, 2012, 2012.
    [55] Liu, J. and Yager, K. G. Unwarping GISAXS Data. IUCrJ 2018, 5, 737-752.
    [56] National Institute of Standards and Technology. "NIST Center for Neutron Research." NIST. https://www.ncnr.nist.gov/resources/activation/ (accessed 25 March 2024).
    [57] Saito, I.; Miyazaki, T. and Yamamoto, K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-ray Scattering Utilizing Low-Energy X-rays. Macromolecules 2015, 48, 8190-8196.
    [58] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.-W.; Chang, T. and Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering. Macromolecules 2005, 38, 4311-4323.
    [59] Hsu, C. H.; Yue, K.; Wang, J.; Dong, X. H.; Xia, Y. F.; Jiang, Z.; Thomas, E. L. and Cheng, S. Z. D. Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films. Macromolecules 2017, 50, 7282-7290.
    [60] Choi, J.; Gunkel, I.; Li, Y.; Sun, Z.; Liu, F.; Kim, H.; Carter, K. R. and Russell, T. P. Macroscopically Ordered Hexagonal Arrays by Directed Self-Assembly of Block Copolymers with Minimal Topographic Patterns. Nanoscale 2017, 9, 14888-14896.
    [61] Heo, K.; Yoon, J.; Jin, S.; Kim, J.; Kim, K.-W.; Shin, T. J.; Chung, B.; Chang, T. and Ree, M. Polystyrene-b-polyisoprene Thin Films with Hexagonally Perforated Layer Structure: Quantitative Grazing-Incidence X-ray Scattering Analysis. Journal of Applied Crystallography 2008, 41, 281-291.
    [62] Lee, B.; Park, I.; Park, H.; Lo, C.-T.; Chang, Taihyun, and Winans, R. E. Electron Density Map Using Multiple Scattering in Grazing-Incidence Small-Angle X-ray Scattering. Journal of Applied Crystallography 2007, 40, 496-504.
    [63] Dair, B. J.; Honeker, C. C.; Alward, D. B.; Avgeropoulos, A.; Hadjichristidis, N.; Fetters, L. J.; Capel, M. and Thomas, E. L. Mechanical Properties and Deformation Behavior of the Double Gyroid Phase in Unoriented Thermoplastic Elastomers. Macromolecules 1999, 32, 8145-8152.
    [64] Pötschke, P. and Paul, D. R. Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends. Journal of Macromolecular Science, Part C 2003, 43, 87-141.
    [65] Cho, B.-K.; Jain, A.; Gruner, S. M. and Wiesner, U. Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons. Science 2004, 305, 1598-1601.
    [66] Yan, L.; Rank, C.; Mecking, S. and Winey, K. I. Gyroid and Other Ordered Morphologies in Single-Ion Conducting Polymers and Their Impact on Ion Conductivity. Journal of the American Chemical Society 2020, 142, 857-866.
    [67] Jo, G.; Ahn, H. and Park, M. J. Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough. ACS Macro Letters 2013, 2, 990-995.
    [68] Park, J. and Winey, K. I. Double Gyroid Morphologies in Precise Ion-Containing Multiblock Copolymers Synthesized via Step-Growth Polymerization. JACS Au 2022, 2, 1769-1780.
    [69] Yang, S.-M.; Oh, J.; Magruder, B. R.; Kim, H. J.; Dorfman, K. D.; Mahanthappa, M. K. and Ellison, C. J. Surface Relief Terraces in Double-Gyroid-Forming Polystyrene-Block-Polylactide Thin Films. Physical Review Materials 2023, 7, 125601.
    [70] Sun, Y.-S.; Jian, Y.-Q.; Yang, S.-T.; Wang, H.-F.; Junisu, B. A.; Chen, C.-Y. and Lin, J.-M. Epitaxial Growth of Surface Perforations on Parallel Cylinders in Terraced Films of Block Copolymer/Homopolymer Blends. Langmuir 2024, 40, 7680-7691.
    [71] Busch, P.; Rauscher, M.; Moulin, J.-F. and Muller-Buschbaum, P. Debye-Scherrer Rings from Block Copolymer Films with Powder-like Order. Journal of Applied Crystallography 2011, 44, 370-379.
    [72] Lee, H.; Kim, J. and Park, M. J. Exploration of Complex Nanostructures in Block Copolymers. Physical Review Materials 2024, 8, 020302.
    [73] Jo, S.; Jun, T.; Jeon, H. I.; Seo, S.; Kim, H.; Lee, S. and Ryu, D. Y. Optical Reflection from Unforbidden Diffraction of Block Copolymer Templated Gyroid Films. ACS Macro Letters 2021, 10, 1609-1615.
    [74] Voss, G. J. B.; Chavez Panduro, E. A.; Midttveit, A.; Fløystad, J. B.; Høydalsvik, K.; Gibaud, A.; Breiby, D. W. and Rønning, M. Mesostructured Alumina as Powders and Thin Films. Journal of Materials Chemistry A 2014, 2, 9727-9735.
    [75] Panduro, E. A. C.; Granlund, H.; Sztucki, M.; Konovalov, O.; Breiby, D. W. and Gibaud, A. Using Three-Dimensional 3D Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) Analysis to Probe Pore Deformation in Mesoporous Silica Films. ACS Applied Materials & Interfaces 2014, 6, 2686-2691.
    [76] Liou, J.-Y. and Sun, Y.-S. Tailor-Made Dimensions of Diblock Copolymer Truncated Micelles on a Solid by UV Irradiation. Soft Matter 2015, 11, 7119-7129.
    [77] Hill, J. A.; Endres, K. J.; Mahmoudi, P.; Matsen, M. W.; Wesdemiotis, C. and Foster, M. D. Detection of Surface Enrichment Driven by Molecular Weight Disparity in Virtually Monodisperse Polymers. ACS Macro Letters 2018, 7, 487-492.
    [78] Mahmoudi, P. and Matsen, M. W. Entropic Segregation of Short Polymers to the Surface of a Polydisperse Melt. The European Physical Journal E 2017, 40, 85.
    [79] Steele, J. A.; Solano, E.; Hardy, D.; Dayton, D.; Ladd, D.; White, K.; Chen, P.; Hou, J.; Huang, H.; Saha, R. A.; Wang, L.; Gao, F.; Hofkens, J.; Roeffaers, M. B. J.; Chernyshov, D. and Toney, M. F. How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering Applied to Metal Halide Perovskite Thin Films. Advanced Energy Materials 2023, 13, 2300760.
    [80] López-Flores, V.; Ansell, S.; Bowron, D. T.; Díaz-Moreno, S.; Ramos, S. and Muñoz-Páez, A. Optimized End Station and Operating Protocols for Reflection Extended X-ray Absorption Fine Structure (ReflEXAFS) Investigations of Surface Structure at the European Synchrotron Radiation Facility Beamline BM29. Review of Scientific Instruments 2007, 78, 013109.

    無法下載圖示 校內:2026-07-23公開
    校外:2026-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE