簡易檢索 / 詳目顯示

研究生: 林宏昀
Lin, Hung-Yun
論文名稱: RC構架內含有開口填入式磚牆面內側向加載試驗與側推分析模型建立
In-plane Load Test and Pushover Analysis Model for Infilled Masonry Panel with Opening in RC Frame
指導教授: 杜怡萱
Tu, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 329
中文關鍵詞: 填入式磚牆開口面內側推分析
外文關鍵詞: Infilled Masonry, Opening, In-plane, Pushover Analysis
相關次數: 點閱:117下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣現存中高樓層集合住宅常以填入式磚牆作為隔間牆,此類磚牆通常被視為非結構牆,但過去研究顯示隔間磚牆可提供相當的剛度及強度貢獻,且可能改變構架的破壞模式。因此本文以集合住宅為原型,規劃一組足尺RC構架內含有偏心門型開口之0.5B填入式磚牆試體,進行面內往復側推試驗,驗證現有側推分析方法,並提出一套新建側推分析模型,提供使用此類磚牆建物之耐震評估使用。
    側推試驗結果顯示,試體柱牆介面於試驗初期即開裂,柱牆各自變形,構架於反向加載時無法帶動磚牆。磚牆出現對角拉力破壞後試體達極限強度,試驗中期發生磚牆面外翻覆後,試體受力行為趨近空構架。鄰牆柱與獨立柱之破壞模式皆為撓曲破壞後發生韌性剪力破壞。由於柱勁度及強度明顯高於0.5B磚牆,磚牆雖有抑制鄰牆柱變形的情形,但並未改變鄰牆柱破壞模式。
    與相同高寬比但牆柱勁度比不同之試體相比,可知牆柱勁度比變化造成之影響主要出現在磚牆破壞後。牆柱勁度比較低時,磚牆不足以束制構架並改變柱之破壞模式,柱仍呈現韌性撓曲破壞。牆柱勁度比較高時,磚牆則會對鄰牆柱造成較大集中剪力並使構架柱破壞模式改變為剪力破壞。
    本文蒐集國內外含填入式磚牆構架試體,以臺灣結構耐震評估側推分析法TEASPA 4.2進行側推分析,與試驗結果比較,顯示TEASPA 4.2於有效剛度之預測有明顯低估之趨勢。本文提出一新建分析模型,並討論磚牆等值斜撐配置方式之影響,與試驗結果之比較顯示本文新建模型分析曲線較TEASPA 4.2貼近試驗曲線,,可修正TEASPA 4.2有效剛度低估之問題,且極限強度預測與試驗結果相近。本文提出雙斜撐與單同心斜撐兩種分析模式,前者設定流程較為繁複,但可反映柱牆互制改變柱破壞模式之現象;後者較為簡易,可用於柱無剪力破壞疑慮或崩塌可能性較低的樓層。

    One full-scale infilled masonry with an opening in RC frame was set for cyclic lateral load test. The test showed that interface between the column and wall cracked at first. The specimen reached its ultimate strength after diagonal tensile failure of the panel wall. The RC frame occurred flexural failure, followed by ductile shear failure. Panel wall did not alter the column's failure mode.
    Comparing specimens with the same aspect ratio but different wall-to-column stiffness ratios, specimens with lower wall-to-column stiffness ratios showed ductile behavior. On the other hand, specimens with higher wall-to-column stiffness ratios occurred shear failure at the end.
    Pushover analysis was conducted using current model TEASPA 4.2 and a new-proposed model. The analysis was compared with experimental results. It was found that TEASPA 4.2 tended to significantly underestimate the effective stiffness. The new analytical model predicted stiffness more precisely, compared to TEASPA 4.2.

    表目錄 iv 圖目錄 vi 符號說明 x 第一章 緒論 1.1 研究動機與目的 1-1 1.2 文獻回顧 1-2 1.3 研究方法 1-7 1.4 章節概述 1-7 第二章 試驗介紹 2.1 試體設計與試驗規劃 2-1 2.1.1 試體設計 2-1 2.1.2 試驗裝置與加載歷程 2-7 2.1.3 量測儀器 2-10 2.2 試體施作及安裝過程 2-12 2.3 材料性質 2-15 2.3.1 混凝土圓柱抗壓試驗 2-16 2.3.2 鋼筋抗拉試驗 2-17 2.3.3 磚塊抗壓試驗 2-18 2.3.4 砂漿抗壓試驗 2-19 2.3.5 磚墩抗壓試驗 2-20 2.3.6 灰縫抗剪試驗 2-21 2.3.7 磚牆對角抗拉試驗 2-22 第三章 試驗過程與試驗結果 3.1 試驗流程與加載歷程 3-1 3.2 試驗結果 3-7 3.2.1 試體破壞歷程 3-7 3.2.2 受力與變形關係 3-30 3.2.3 試體變形模式 3-32 3.2.4 試體受力行為歸納 3-43 3.3 小結 3-61 第四章 既有填入式磚牆構架分析模型與試驗結果比對 4.1 既有填入式磚牆構架分析模型簡介 4-1 4.1.1 含填入式磚牆構架之結構模型設定 4-1 4.1.2 TEASPA 4.2磚牆分析模型 4-8 4.2 既有含磚牆構架試體與分析模型之比對 4-12 4.2.1 試體簡介 4-13 4.2.2 分析模型與試驗結果比較 4-14 4.3 小結 4-30 第五章 新建填入式磚牆構架分析模型與試驗結果比對 5.1 新建填入式磚牆構架分析模型簡介 5-1 5.1.1 新建填入式磚牆構架結構模型設定 5-1 5.1.2 新建磚牆分析模型 5-6 5.2 新建填入式磚牆構架分析模型驗證 5-13 5.2.1 分析曲線與試驗曲線比較 5-13 5.2.2 分析曲線強度、剛度、位移比較 5-23 5.2.3 試體ID-e分析假設之修正 5-38 5.3 新建模型參數驗證 5-43 5.3.1 受磚牆圍束鄰牆柱勁度調升倍數 5-43 5.3.2 無開口磚牆束制長度 5-44 5.4 雙斜撐分析模型 5-45 5.4.1 分析模型設定 5-45 5.4.2 分析結果驗證 5-46 5.5 小結與建議 5-48 5.5.1 小結 5-48 5.5.2 建議 5-49 第六章 結論與建議 6.1 結論 6-1 6.2 建議 6-4 參考文獻 參-1 附錄A 試體ID-e-0.5裂縫圖與破壞照片 A-1 附錄B 分析模型比對引用試體資訊 B-1 附錄C 磚牆破壞強度公式計算 C-1 附錄D 既有與新建模型分析結果圖 D-1 A. TEASPA 4.2 D-2 B. 配置一(偏心斜撐,柱剪力塑鉸位於斜撐之下) D-11 C. 配置二(偏心斜撐,柱剪力塑鉸位於斜撐之上) D-20 D. 配置三(同心斜撐,柱剪力塑鉸位於斜撐之下) D-29

    1. 陳奕信(2003),含磚牆RC建築結構之耐震診斷,國立成功大學建築研究所博士論文,台南。
    2. 莊宗樺(2013),部分圍束加強磚造高型磚牆面內受力行為研究,國立成功大學建築研究所博士論文,台南。
    3. 趙彥棻(2015),RC構架內含填入式開口磚牆面內側向加載試驗與分析,國立成功大學建築研究所碩士論文,台南。
    4. FEMA 356, F. E. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC.
    5. 林育瑄(2016),RC構架內含偏心開口不同構法磚牆面內側向加載試驗,國立成功大學建築研究所碩士論文,台南。
    6. 蔡旻欣(2016),窗型開口型式填入式磚牆材料與面內側向加載試驗,國立成功大學建築研究所碩士論文,台南。
    7. 董宜婷(2017),RC構架內含偏心開口填入式磚牆面內側推試驗與補強驗證,國立成功大學建築研究所碩士論文,台南。
    8. 張博閔(2018),三邊圍束加強磚造磚牆性能曲線分析模型,國立成功大學建築研究所碩士論文,台南。
    9. Li, T., Galati, N., Tumialan, J. G., & Nanni, A. (2005). Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI structural journal, 102(4), 569.
    10. Kakaletsis, D. J., & Karayannis, C. G. (2008). Influence of masonry strength and openings on infilled R/C frames under cycling loading. Journal of Earthquake Engineering, 12(2), 197-221.
    11. Mansouri, A., Marefat, M. S., & Khanmohammadi, M. (2014). Experimental evaluation of seismic performance of low‐shear strength masonry infills with openings in reinforced concrete frames with deficient seismic details. The Structural Design of Tall and Special Buildings, 23(15), 1190-1210.
    12. Rahman, A., & Ueda, T. (2014). Experimental investigation and numerical modeling of peak shear stress of brick masonry mortar joint under compression. Journal of Materials in Civil Engineering, 26(9), 04014061.
    13. American Society of Civil Engineers. (2017, December). Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers.
    14. Jeon, J. S., Park, J. H., & DesRoches, R. (2015). Seismic fragility of lightly reinforced concrete frames with masonry infills. Earthquake Engineering & Structural Dynamics, 44(11), 1783-1803.
    15. Akhoundi, F., Lourenço, P. B., & Vasconcelos, G. (2016). Numerically based proposals for the stiffness and strength of masonry infills with openings in reinforced concrete frames. Earthquake Engineering & Structural Dynamics, 45(6), 869-891.
    16. Humayun Basha, S., Surendran, S., & Kaushik, H. B. (2020). Empirical models for lateral stiffness and strength of masonry-infilled RC frames considering the influence of openings. Journal of Structural Engineering, 146(4), 04020021.
    17. 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,臺灣結構耐震評估與補強技術手冊(TEASPA v4.0),NCREE-20-005,國家地震工程研究中心,台北。
    18. ACI Innovation Task Group 1. (2001). Acceptance Criteria for Moment Frames Based on Structural Testing (T1. 1-01) and Commentary (T1. 1R-01): An ACI Standard. American Concrete Institute.
    19. ASTM, C. (2003). 1314. Standard Test Method for Compressive Strength of Masonry Prisms. ASTM: West Conshohocken, PA.
    20. EN1052, C. E. N. (2002). 3: 2002 Methods of test for masonry-Part 3: Determination of initial shear strength.
    21. ASTM, E. (2002). Standard test method for diagonal tension (shear) in masonry assemblages. In Am. Soc. Test. Mater. (Vol. 5).
    22. 戴佑軒(2020),超高性能混凝土噴漿工法於磚牆補強效用之評估,國立成功大學建築研究所碩士論文,台南。
    23. Asteris, P. G., Antoniou, S. T., Sophianopoulos, D. S., & Chrysostomou, C. Z. (2011). Mathematical macromodeling of infilled frames: state of the art. Journal of Structural Engineering, 137(12), 1508-1517.
    24. Kakaletsis, D. (2009). Masonry infills with window openings and influence on reinforced concrete frame constructions. WIT Transactions on the Built Environment, 104, 445-455.
    25. Schwarz, S., Hanaor, A., & Yankelevsky, D. Z. (2015, August). Experimental response of reinforced concrete frames with AAC masonry infill walls to in-plane cyclic loading. In Structures (Vol. 3, pp. 306-319). Elsevier.
    26. Zhai, C., Kong, J., Wang, X., & Chen, Z. (2016). Experimental and finite element analytical investigation of seismic behavior of full-scale masonry infilled RC frames. Journal of Earthquake Engineering, 20(7), 1171-1198.
    27. Morandi, P., Hak, S., & Magenes, G. (2018). Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills. Engineering Structures, 156, 503-521.
    28. Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings (Vol. 768). New York: Wiley.
    29. Drysdale, R. G., & Hamid, A. A. (1982). Tensile strength of brick masonry. International Journal of Masonry Construction, 2(4), 172-177.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE