簡易檢索 / 詳目顯示

研究生: 劉欣
Liu, Shin
論文名稱: 氧化銦奈米線之成長及其應用
Synthesis and Applications of Indium Oxide Nanowires
指導教授: 張守進
Chang, Shoou-Jinn
陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 75
中文關鍵詞: 奈米線氧化銦
外文關鍵詞: nanowire, Indium Oxide
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗旨在探討氧化銦一維奈米結構之成長及其性質。首先,我們藉由加熱式管狀爐,以化學氣相沉積法(Chemical Vapor Deposition,CVD)的方式,並透過不同成長參數的調變,成功地合成一系列不同形貌的氧化銦(In2O3)奈米線。在掃瞄式電子顯微鏡(SEM)的觀測下,我們發現奈米線的線徑隨成長溫度的上升而降低,但線長隨著溫度的上升而增加,因此在成長溫度950℃時,我們得到一外觀比最大的奈米線,分別是線徑100nm及線長20µm;接著對此奈米線進行X 射線能量散佈分析儀(EDX)的分析,可證明此奈米線的氧及銦的合成成份是正確的比例。藉由X射線繞射分析儀(XRD)的分析,我們得到此奈米結構為立方晶相的氧化銦。
    在分析完基本的形貌與材料結構後,我們將對其進行氣體感測的研究。我們分別討論了奈米線線徑、感測溫度及不同感測氣體對氣體感測元件的影響。在同樣的量測參數下,我們發現元件的感測響應隨著奈米線線徑降低而大幅提升,以線徑100nm的奈米線有著最佳響應。另外,此實驗製備出的感測元件有極廣的操作溫度範圍,在25℃~300℃下都可正常地作用,而在300℃時此元件有最好的響應。最後,針對不同感測氣體的部分,我們發現此實驗中的感測元件對甲醇、乙醇及酒精都有不錯的響應,但實驗結果顯示,此元件對酒精有較高的選擇性。
    我們針對兩種不同形貌的奈米線做場發射(Field Emission)的電性研究,以成長完成的奈米線及奈米塔試片做量測後,可以發現氧化銦奈米線擁有起始電場為3.4 V/µm的良好場發射響應;但另一種氧化銦奈米塔,由於其特殊形貌的影響,其具備起始電場為2.5 V/µm的更佳響應。這兩種形貌的奈米線都擁有很高的場發射增強因子(β)分別是奈米塔為3590而奈米線為2123,可推斷In2O3材料有不錯的場發性質,有應用於電子元件的潛力。

    In this study, we have successfully synthesized Indium Oxide nanowires through Vapor-Liquid-Solid method by using conventional furnace system. We found that if the growth temperature increases, the radius of nanowires would decrease from 500nm to 100nm with the length increasing from 5µm to 20µm. Moreover, we changed the positions of the substrates, and founded that if we put the substrate reversely, the nanotowers would be synthesized. Subsequently, these two kinds of nanostructures were analyzed by EDX and XRD. The measured result shows that nanowires and nanotowers synthesized in our study are Indium Oxide and cubic structure.
    In the application section, we first discussed the impact causing by different sizes of nanowires. We can obtain that the device fabricated by the narrowest nanowires of 100nm has the better sensitivity than others. Then, we investigated the gas sensor device working at different temperatures and founded that it had the highest sensitivity at working temperature of 300℃. Finally, we use different kinds of gas including methanol, ethanol and acetone as target gas, and demonstrated that the device in our paper had good selectivity toward ethanol.
    Another application is Field Emission device. Nanowire has the turn-on field of 3.4 V/µm, and nanotower has the turn-on field of 2.5 V/µm. Both of them have higher β value that are 3590 for the nanotowers and 2123 for the nanowires . So, we can demonstrate that gas sensors or electrical devices based in nanowires in this study have excellent performance.

    摘要 I Abstract III 誌謝 V Contents VI Table contents IX Figure contents X Chapter 1 Introduction and Motivation 1 1-1 Introduction to nanotechnology 1 1-2 Introduction to Indium Oxide 3 1-3 Introduction to Vapor-Liquid-Solid mechanism 6 1-4 Motivation 7 REFERENCE 8 Chapter 2 Theoretical background 10 2-1 Growth methods of one-dimension Indium Oxide 10 2-2 Applications of one-dimension Indium Oxide 15 REFERENCE 18 Chapter 3 Experimental Procedure and Analytical Apparatus 19 3-1 Experimental Procedure 19 3-1-1 Preparation of substrates 21 3-1-2 Fabrication of In2O3 nanowires 22 3-2 Analytical Apparatus 27 3-2-1 Field emission scanning electron microscope(FE-SEM) 27 3-2-2 Energy-dispersive X-ray spectroscopy (EDX) 29 3-2-3 X-ray diffraction (XRD) 30 REFERENCE 31 Chapter 4 Analysis of In2O3 nanowires 32 4-1 SEM analysis of In2O3 nanowires 32 4-1-1 Effect of the growth temperature 32 4-1-2 Effect of the positions of substrates 40 4-2 EDX analysis of In2O3 nanowires 43 4-3 XRD analysis of In2O3 nanowires 46 4-4 Summary 48 REFERENCE 49 Chapter 5 Application of the Indium Oxide nanowires 50 5-1 Application of gas sensor 50 5-1-1 Fabrication and measurement of device 50 5-1-2 Results and discussion 52 5-1-3 Summery 66 5-2 Application of Field Emission 67 5-2-1 Fabrication and measurement of device 67 5-2-2 Results and discussion 68 5-2-3 Summary 71 REFERENCE 72 Chapter 6 Conclusion and Future works 74 6-1 Conclusion 74 6-2 Future works 75

    Chapter 1
    [1]R. Kubo, “ELECTRONIC PROPERTIES OF SMALL PARTICLES”, J. phys. Soc. Jpn., vol. 21, no. 9, pp. 1765-1772, Sep. 1966.
    [2]Y. Xia, P. Yang, Y. Sun1, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater., vol. 15, no. 5, pp. 353-389, Mar. 2003.
    [3]C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu and C. Zhou, “Synthesis, Electronic Properties and Applications of Indium Oxide Nanowires”, Ann. N.Y. Acad. Sci., vol. 1006, no. 1, pp. 104–121, Dec. 2003.
    [4]http://www.bioinfo.org.cn/book/bioche
    [5]A. M. Alfantazi, R. R. Moskalyk, “Processing of indium: a review”, Miner. Eng., vol. 16, no. 8, pp. 687–694, Aug. 2003.
    [6]S. S. Farvid, P. V. Radovanovic, “Phase Transformation of Colloidal In2O3 Nanocrystals Driven by the Interface Nucleation Mechanism: A Kinetic Study”, J. Am. Chem. Soc., vol. 134, no 16, pp 7015–7024, Mar. 2012.
    [7]A. Gurlo, P. Kroll, R. Riedel, “Metastability of Corundum-Type In2O3”, Chem.-Eur. J, vol. 14, no. 11, pp. 3306–3310, Apr. 2008.
    [8]R.D. Shannon, “New high pressure phases having the corundum structure”, Solid State Commun. , vol. 4, no. 12, pp. 629–630, Dec. 1966.
    [9]H.A. R. Aliabad, Y. Asadi, I. Ahmad, “Quasiparticle optoelectronic properties of pure and doped indium oxide”, Opt. Mater., vol. 34, no. 8, pp. 1406–1414, Jun. 2012.
    [10]F. Yang, J. Ma, X. J. Feng, L. G. Kong, “Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition”, J. Cryst. Growth, vol. 310, no. 18, pp. 4054–4057, Aug. 2008.
    [11]Z. M. Zeng, K. Wang, Z. X. Zhang, J. J. Chen, W. L. Zhou “The detection of H2S at room temperature by using individual indium oxide nanowire transistors”, Nanotech., vol. 20, no. 2, pp. 045503- 045506, Dec. 2008.
    [12]N. Singha, A. Ponzoni, R. K. Gupta, P. S. Lee, E. Comini, “Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing”, Sens. Actuators, B, vol. 160, no. 1, pp. 1346–1351, Dec. 2011.
    [13]C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, C. G. Zhou, “In2O3 nanowires as chemical sensors”, Appl. Phys. Lett., vol. 82, no. 10, pp. 1613-1615, Mar. 2008.
    [14]R. K. Joshia, J. J. Schneider, “Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality”, Chem. Soc. Rev., vol. 41, no. 15, pp. 5285-5312, Jun. 2012.

    Chapter 2
    [1]W. Yin, M. Doty, C. Ni, C. Hu, M. Cao, B. Wei, “Vertically Well-Aligned In2O3 Cone-Like Nanowire Arrays Grown on Indium Substrates”, Eur. J. Inorg. Chem., vol. 2011, no. 10, pp. 1570–1576, Feb. 2011.
    [2]P. C. Xu, Z. X. Cheng, Q. G. Pan, J. Q. Xu, Q. Xiang, W. J. Yu, Y. L. Chu, “High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties”, Sens. Actuators B, vol. 130, no. 2, pp. 802-808, Mar. 2008.
    [3]S. Huang, G. Ou, J. Cheng, H. Li, W. Pan, “Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning”, J. Mater. Chem. C., vol. 1, no. 39, pp. 6463-6470, Aug. 2013.
    [4]P. Gali, F. L. Kuo, N. Shepherd, U. Philipose, “Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires”, Semicond. Sci. Technol., vol. 27, no. 1, pp. 015015-015019, Jan. 2012.
    [5]G. Shen, B. Liang, X. Wang, H. Huang, D. Chen, Z. L. Wang, “Ultrathin In2O3 Nanowires with Diameters below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications”, ACS Nano, vol. 5, no. 8, pp. 6148–6155, Jul. 2011.
    [6]J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, “Preparation of mesoporous In2O3 nanorods via a hydrothermal -annealing method and their gas sensing properties”, Mater. Lett., vol. 75, no. 5, pp. 126–129, May. 2012.
    [7]N. Singh, C. Y. Yan, P. S. Lee, E. Comini, “Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation”, Nanoscale, vol. 3, no. 4, pp. 1760-1765, Feb. 2011.

    Chapter 3
    [1]R. E. Honig, D. A. Kramer, “Vapor Pressure Data for the Solid and Liquid Elements”, RCA Rev., vol. 30, pp. 285-305, 1969.
    [2]N. M. A. Hadia, H. A. Mohamed, “Synthesis, structure and optical properties of single-crystalline In2O3 nanowires”, J. Alloys Compd., vol. 547, pp. 63-67,
    Sep. 2012.
    [3]Y. G. Yan, Y. Zhang, H. B. Zeng, J. X. Zhang, X. L. Cao, L. D. Zhang,“Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods”, Nanotech., vol. 18,
    pp. 175601-175606, Apr. 2007.
    [4]C. A. Pan, T. P. Ma, “Evaporation of High Quality Films from In2O3/In Source-Evaporation Chemistry and Thermodynamics”, J. Electrochem. Soc., vol. 128, no. 9, pp. 1953-1957, Sep. 1981.
    [5]N. D. Singh, T. Zhang, P. S. Lee, “The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods”, Nanotech., vol. 20, pp.195605-19511, Apr. 2009.
    [6]N. Singh, T. Zhang, P. S. Lee, “The synthesis and growth mechanism of bamboo-like In2O3 nanowires”, Nanotech., vol.21, pp.405601- 405607, Sep. 2011.
    [7]http://cmnst.ncku.edu.tw/bin/home.php
    [8]http://en.wikipedia.org/wiki/Scanning_electron_microscope
    [9]http://www.ammrf.org.au/myscope/sem/background/concepts/interactions.php
    [10]http://www.ncku.edu.tw/~facility/facility/

    Chapter 4
    [1]S. T. Jean, Y. C. Her, “Growth Mechanism and Photoluminescence Properties of In2O3 Nanotowers”, Cryst. Growth Des. , vol. 10, no. 5, pp. 2104-2110, Apr. 2010.
    [2]E. A. Sutter, X. Tong, K. Jungjohann, P. W. Sutter, “Oxidation of nanoscale Au-In alloy particles as a possible route toward stable Au-based catalysts.”, Proc. Natl. Acad. Sci. , vol. 110, no. 26, pp. 10519-10524, Jun. 2013.
    [3]S. Kan, T. Mokari, E. Rothenberg, U. Banin, “Synthesis and size- dependent properties of zinc-blende semiconductor quantum rods”, Nat. Mater., vol. 2, no. 3,pp. 155-158, Mar. 2003.
    [4]Y. F. Hao, G. W. Meng, C. H. Ye, L. D. Zhang, “Controlled Synthesis of In2O3 Octahedrons and Nanowires”, Cryst. Growth Des., vol. 5, no. 4, pp. 1617-1621, May. 2005.
    [5]Y. G. Yan, Y. Zhang, H. B. Zeng, L. D. Zhang, “In2O3 Nanotowers: Controlled Synthesis and Mechanism Analysis”, Cryst. Growth Des. , vol. 7, no. 5, pp. 940-943, Mar. 2007.
    [6]Z. L. Wang, “Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies”, J. Phys. Chem. B, vol. 104, No. 6, pp. 1153-1175, Jan. 2000.

    Chapter 5
    [1]I. D. Kim, A. Rothschild, H. L. Tuller, “Advances and new directions in gas-sensing devices”, Acta Mater., vol. 61, no. 3, pp. 94-100, Feb. 2013.
    [2]N. Singh, R. K. Gupta, P. S. Lee, “Gold – Nanoparticle -Functionalized In2O3 Nanowires as CO Gas Sensors with a Significant Enhancement in Response”, ACS Appl. Mater. Interfaces, vol. 3, no. 7, pp. 2246–2252, Jun. 2011.
    [3]N. Singh, C. Y. Yan, P. S. Lee,“Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors”, Sens. Actuators B, vol. 150, no. 1, pp. 19-24, Sep. 2010.
    [4]N. Singh, C. Y. Yan, P. S. Lee, E. Comini, “Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation”, Nanoscale,
    vol. 3, no. 4, pp. 1760-1765, Feb. 2011.
    [5]N. Yamazoe, K. Shimanoe, “Theory of power laws for semiconductor gas sensors”, vol. 128, no. 2, Sens. Actuators B, vol. 128, no.2, pp. 566–573, Jan. 2008.
    [6]S. S. Kim, J. Y. Park, S. W. Choi, H. S. Kim, H. G. Na, J. C. Yang, H. W. Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles”, Nanotech., vol. 21, no. 41, pp. 415502-415508, Oct. 2010.
    [7]C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang, R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors”, Sensors, vol. 10, no. 3, pp. 2088-2106, Mar. 2010.
    [8]P. C. Xu, Z. X. Cheng, Q. G. Pan, J. Q. Xu, Q. Xiang, W. J. Yu, Y. L. Chu, “High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties”, Sens. Actuators B, vol. 130, no. 2, pp. 802-808, Mar. 2008.
    [9]M. Kumar, B. R. Mehta, V. N. Singh, R. Chatterjee , S. Milikisiyants ,K. V. Lakshmi, J. P. Singh, “The role of stoichiometry of indium and oxygen on gas sensing properties of indium oxide nanostructures”, Appl. Phys. Lett, vol. 96, no. 21 pp. 123114, Mar. 2010.
    [10]B. R. MEHTA, V. N. SINGH, “Structural, electrical and gas-sensing properties of In2O3 : Ag composite nanoparticle layers” , PRAMANA, vol. 65, no. 5, pp. 949-958, Nov. 2005.
    [11]W. Zeng, T. M. Liu, “Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism”, Physica B, vol. 405, no. 5, pp. 1345-1348, Mar. 2010.
    [12]R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Royal Soc. London Ser. A, vol. 119, No. 781, pp. 173-181, May. 1928.
    [13]X. Fang, Y. Bando, U. K. Gautam, C. Ye, D. Golberg, “Inorganic semiconductor nanostructures and their field-emission”, J. Mater. Chem., vol. 18, pp. 509-522, Nov. 2008.
    [14]C. X. Xu, X. W. Sun, B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array”, Appl. Phys. Lett., vol.84, no. 9, pp. 1540- 1542, Mar. 2004.
    [15]W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. M. Zhao, P. Sun, F. Q. Song, J. G. Wan K. J. Chen. “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography”, Nanotech., vol. 9, no. 13, pp. 135308- 135312, Apr. 2008.

    無法下載圖示 校內:2019-01-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE