| 研究生: |
鄧名傑 Deng, Ming-Jay |
|---|---|
| 論文名稱: |
室溫融鹽中錳與銅-錳合金的製備及應用 Preparation of Mn and Cu-Mn Alloy in Air and Water-Stable Room Temperature Ionic Liquid and Its Applications |
| 指導教授: |
孫亦文
Sun, I-W |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 離子液體 、合金 |
| 外文關鍵詞: | alloy, ionic liquid |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中利用鎢、白金電極去探討錳在中性1-butyl-1-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide (BMP-TFSI)離子液體中電化學行為。Mn(II)是利用溶解錳塊的方式得到。在鎢、白金電極上所還原的Mn(II)是屬於半可逆的行為而且其成對的氧化峰部分有受到動力學的阻礙,這個結果造成所還原出來的Mn(0)無法被完全氧化。探討溫度範圍在301.0 to 348.0 K時BMP-TFSI離子液體的密度以及相對黏度。利用電沉積法在各種不同基材上製備錳鍍層。並且分別利用掃描式電子顯微鏡與粉末X光繞射光譜儀觀察鍍層表面結構與晶格排列。結果發現,利用電沉積方式得到的錳鍍層是屬於非晶型結構,不過將鍍層在723K下煅燒24小時可以發現α相的錳訊號。在疏水性的1-butyl-1-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide 離子液體中電沈積銅-錳合金。用來製作合金的Cu(I)及Mn(II)是藉由在離子液體中陽極溶解金屬電極。再利用定電位電鍍可以得到含有銅或銅錳合金的鍍層。銅錳合金的比例幾乎是受到離子液體中Cu(I)及Mn(II)的比例影響。所沉積出來的銅錳合金表面形貌與其合金的混成比例有關。當製備出來的合金電極中錳含量高於50%時有效改善銅的抗腐蝕能力。銅錳合金電極在0.1 M氫氧化鈉水溶液中對threonine做陽極偵測具有很高的靈敏性,特別是錳含量高於50%之後。
The electrochemistry of manganese was investigated at solid disk electrodes in the hydrophobic room-temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide (BMP-TFSI) by using staircase cyclic voltammetry and chronoamperometry. The Mn(II) species was introduced into the ionic liquid by anodic dissolution of the metallic manganese electrode. The reduction of Mn(II) ions at tungsten and platinum electrodes is quasireversible and the coupled oxidation wave encounters kinetic hindrance that results in incomplete reoxidation of Mn electrodeposits. The density and absolute viscosity of BMP-TFSI were measured over a temperature range from 301.0 to 348.0 K. The manganese coatings were prepared by electrodeposition at several substrates. The surface morphology and X-ray diffraction pattern of these deposits were studied by scanning electron microscopy and powder X-ray diffraction spectroscopy, respectively. The as electrodeposited manganese coatings were amorphous; however, α-phase manganese appeared after the deposits were annealed under 723 K for 1 day. Then,copper–manganese alloys were electrodeposited from the hydrophobic room-temperature ionic liquid, 1-butyl-1-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide. Cu(I) and Mn(II) species needed to produce these alloys were introduced into the ionic liquid by the anodic dissolution of the respective metallic electrodes. Coatings containing Cu or Cu–Mn can be obtained by controlled-potential electrolysis. The Mn/Cu ratio of these alloys depended almost completely on Mn(II)/Cu(I) concentration ratio in the ionic liquid. The Cu–Mn alloy surface morphology of these deposits depended on the Mn/Cu ratio. The addition of Mn up to about 50 a/o improves the corrosion resistance of Cu. For anodic detection of threonine in 0.1 M NaOH, preanodized Cu-Mn alloy electrodes show highly enchancedsensitivity, especially the addition of Mn up to 50 a/o.
[1] Wilkes,J.S. Green Chem. 2002,4,73.
[2] G. Delarue, J. Electroanal. Chem., 1, 285(1959).
[3] J. M. Schafir and J. A. Plambeck, Can. J. Chem., 48, 2131(1970).
[4] L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc.:Electrochemical Science and technology, 120, 223(1973).
[5] I-W. Sun, A. G. Edwards and G. Mamantov, J. Electrochem. Soc., 140,2733(1993).
[6] G. R. Stafford, J. Electrochem. Soc., 141, 945(1994).
[7] G. Mamantov, G.-S. Chen, H. Xiao, Y. Yang and E.Hondrogiannis,J.Electrochem. Soc., 142, 1758(1995).
[8] D. M. Gruen and R. L. Mcbth, Pure Appl. Chem., 6 23, (1963)
[9] J. Phillips and R. A. Osteryoung, J. Electrochem. Soc., 124,1465(1977)
[10] M. J. Earle and K. R. Seddon, Pure and Applied Chemistry, 72,1391(2000)
[11] 科學發展,396期,56-61頁,2005年12月
[12] K. R. Seddon, J. Chem. Tech. Biotechnol., 68, 351 (1997)
[13] Sheldon, R., Chem. Comm., 2399, 2001
[14] P. Walden, Bull. Acad. Imper. Sci., 1800 (1914)
[15] R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi and C. L.Hussey, J. Electrochem. Soc., 126, 1644(1979).
[16] J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 101,323(1979).
[17] J.S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg.Chem., 21, 1263(1982).
[18] E. I. Cooper and E. J. M. O’Sullivan, in“proceedings of the eighthInternational Symposium of Molten Salts, Physical and High Temperature Materials Division Proceeding”, PV 92-16, R.J. Gale, G.Blomgren and H. Kojima, Editor, pp. 386, J. Electrochem. Soc.,
Pennington, NJ(1992).
[19] J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc. Chem. Commun.,965(1992)
[20] P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza and J.Dupont, Polyhedron, 15, 1217(1996).
[21] P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, Inorg. Chem., 35, 1168 (1996).
[22] R. J. Gale, B. Gilbert and R. A. Osteryoung, Inorg. Chem., 17,2728(1978).
[23] R. J. Gale and R. A. Osteryoung, Inorg. Chem., 19, 2240(1980).
[24] J. L. Gray and G.E. Maciel, J. Am. Chem. Soc., 103, 7147(1981).
[25] R.T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove, J.Electrochem. Soc., 141,L73(1994).
[26] F. Endres, ChemPhysChem 3 (2002) 144.
[27] A. P. Abbott, Phys. Chem. Chem. Phys., 2006, 8, 4265.
[28] H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Hoboken, New Jersey, USA, 2005.
[29] P.C. Trulove, J.A. Mitchell, P.L. Hagans, R.T. Carlin, G.R. Stafford, H.C. De Long, Proc. Electrochemical Society (Molten Salts XII), 99-41 (2000) 517.
[30] H.C. De Long, J.A. Mitchell, P.C. Trulove, High Temperature Material Processes, Begell House, New York, USA, 1998.
[31] H.C. De Long, J.A. Mitchell, P.L. Hagans, R.T. Carlin, G.R. Stafford, P.C. Trulove, Proc. Electrochemical Society (Molten Salts XI), 98-11 (1998) 40.
[32] H.Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Y. Miyazaki, Chem. Lett. (2000) 922.
[33] B.M. Quinn, Z. Ding, R. Moulton, A.J. Bard, Langmuir 18 (2002) 1734.
[34] J.Sun, M. Forsyth, D.R. MacFarlane, J. Phys. Chem. B 102 (1998) 8858.
[35] K.Murase, K. Nitta, T. Hirato,Y.Awakura, J. Appl. Electrochem. 31 (2001) 1089.
[36] D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B 103 (1999) 4164.
[37] S.Z. El Abedin, N. Borissenko, F. Endres, Electrochem. Commun. 6 (2004) 510.
[38] S.Z. El Abedin, H.K. Farag, E.M. Moustafa, U.Welz-Biermann, F. Endres, Phys. Chem. Chem. Phys. 7 (2005) 2333.
[39] P. Y. Chen, C.L. Hussey, Electrochim. Acta 52 (2007) 1857.
[40] A. J. Bard and L. R. Faulkner, “Electrochemical Methods;Fundamentals and Applications”,John Wiley&Sons,New York(2001)
[41] A. J. Bard and L.R. Faulkner, “Electrochemical Methods;
Fundamentals and Application”, John Wiely & Sons, New York(1980).
[42] W. M. MacNevin and B. B. Baker, Anal. Chem., 24, 986(1952).
[43] P.-Y. Chen, Electrochim. Acta (2007), doi:10.1016/2007.03.010.
[44] J.R. Sanders, E.H. Ward, C.L. Hussey, J. Electrochem. Soc. 133 (1986) 325.
[45] J.R. Sanders, E.H. Ward, C.L. Hussey, J. Electrochem. Soc. 133 (1986) 1526.
[46] P.-Y. Chen, C. L. Hussey, Electrochim. Acta 49 (2004) 5125.
[47] P.A.Z. Suarez, S. Einloft, J.E.L. Dullius, R.F. de Souza, J. Dupont, J. Chim. Phys.95 (1998) 1626.
[48] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bˆonhote, H. Petersson, M. Gr¨atzel, J. Electrochem. Soc. 143 (1996) 3099.
[49] A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 105 (2001) 4603.
[50] A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, J. Electrochem. Soc. 146(1999) 1687.
[51] S. Zein El Abedin, F. Endres, ChemPhysChem 2006, 7, 1535.
[52] S. Zein El Abedin, F. Endres, Electrochem. Commun. 2005,7, 1111.
[53] S. Zein El Abedin, F. Endres, Electrochim. Acta 52 (2007) 2746.
[54] F. Endres and S. Zein El Abedin, Phys. Chem. Chem. Phys., 2006, 8, 2101.
[55] S.Z. El Abedin, F. Endres, ChemPhysChem 7 (2006) 58.
[56] N. Fietkau, ChemPhysChem 2006, 7, 1041.
[57] Masaki Yamagata, Yasushi Katayama, Electrochim. Acta 52 (2007) 3317.
[58] W.R. Pitner and C. L. Hussey, J. Electrochem. Soc. 144, 3095, 1997.
[59] S. Mho, D. C. Johnson, J. Electroanal. Chem. 500 (2001) 524
[60] S. Mho, D. C. Johnson, J. Electroanal. Chem. 495 (2001) 152