| 研究生: | 黃柏維 Huang, Po-Wei | 
|---|---|
| 論文名稱: | 具自鎖功能之輔助載具用磁性致動器設計 Design of Flux-Switching Actuators with Auto-locking Function for Power Assist Devices | 
| 指導教授: | 蔡明祺 Tsai, Mi-Ching | 
| 學位類別: | 博士 Doctor | 
| 系所名稱: | 工學院 - 機械工程學系 Department of Mechanical Engineering | 
| 論文出版年: | 2013 | 
| 畢業學年度: | 102 | 
| 語文別: | 英文 | 
| 論文頁數: | 88 | 
| 中文關鍵詞: | 頓轉扭矩 、磁性切換 、能源利用率 、輔助載具 | 
| 外文關鍵詞: | cogging torque, flux switching, energy use rate, power assistive device | 
| 相關次數: | 點閱:137 下載:15 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本論文旨在發展一具自鎖功能之輔助載具用磁性致動器設計。傳統工作於短行程及非連續操作環境的輔助載具用之致動器,在操作時常遇到須在某位置點停頓長時間的情況,但是電能仍需持續付出以維持致動器固定。本研究基於雙氣隙永磁馬達永久磁座的設計概念,提出一新型磁性切換裝置設計。此裝置可結合直驅式馬達或是馬達與齒輪箱的搭配成為新型式之致動器,且其具切換磁通路徑的功能,使此新致動器具有切換高低頓轉扭矩之能力。低頓轉扭矩模式可讓致動器如同傳統致動器般工作,而當其需停頓一段時間於固定位置時,可自動切換為高頓轉扭矩模式可取代電磁力來使致動器維持同一位置,此特性更可保護使用者與致動器所運作之物品安全。而為使此磁性切換裝置可以應用於更廣泛的工作場合,本論文提出了兩種改良型設計。首先針對自啟動式永磁同步馬達轉子結構與輸出特性作一探討,並提出輸出性能最佳之轉子V型磁鐵展開角設計且其樣機效率可達90%。透過此研究,本論文將自啟動式永磁馬達之轉子結構結合前述之致動器設計,提出一可結合磁性切換裝置之新型徑向式外轉子自啟動式永磁同步馬達,使此新致動器具有無需位置感測元件啟動且操作於定轉速下不需變頻器的特性。第二則針對磁性切換裝置進行改良,特過磁路設計使其增加四組軸向繞組,使改良後之裝置具有軸向磁場可控的特性,這將使新致動器於切換過程中更為平順且工作性能更為穩定,以上二點改良將使本論文所發展之致動器可應用於更多不同之工作環境。
This research aims to design a flux-switching actuator with an auto-locking function for power assist devices. Traditional actuators used in situations of brief travel and discontinuity, such as power assistive devices, usually need to stop at a position for a long time but still require electric power supply to maintain sufficient electromagnetic force. This research presents a new flux switching device (FSD) based on the design concept of dual gap permanent magnet motors (PM motors) and magnetic bases. Applications of this device include incorporation with direct-drive motors or motors with gear ratios, which further enable high/low cogging torque switching ability by modifying the flux path. When the proposed actuator is operated in low cogging torque mode, it functions as the traditional device; however, when the actuator needs to maintain the same position, the cogging torque is adopted automatically and alternates to electromagnetic force in high cogging torque mode. This feature can improve the safety of users and products. In order to widen FSD applications, this research also presents two improved actuator designs. The first improvement starts with investigations of the rotor structure and output characteristics of line start permanent magnet motors (LSPMMs). Moreover, the open angle of V-shaped magnets, which possesses better efficiency, is designed such that the prototype efficiency can reach 90%. With this investigation, this research integrates the rotor structure of LSPMMs into the actuator design and presents a new outer rotor type LSPMM, which can be incorporated with FSD and can start up without sensors, encoders, or inverters. To summarize the second improvement, four axial winding coils are added to improve the actuator design, which ensures that the axial magnetic field is controllable; thus, the switching process becomes smoother and the performance more stable. With these two improvements, the actuator developed in this dissertation is applicable to various conditions.
[1] Aliabad, A. D. and Mirsalim, M., “Analytic modelling and dynamic analysis of pole-changing line-start permanent-magnet motors,” Electric Power Applications IET, Vol. 6, pp. 149-155, 2012.
[2] Atallah, K. and Howe, D., “A novel high-performance magnetic gear,” IEEE Transaction on Magnetics, Vol. 37, No. 4, pp. 2844-2846, 2001. 
[3] Dwivedi, A. and Srivastava, R. K., “Analysis of dual stator PM brushless DC motor,” IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE), Vol. 1, pp. 51, May./Jun. 2012. 
[4] Final Draft Int. Standard, IEC 60034-30 Ed.1, UK, 2008.
[5] Garcia, E., Antonia Jimenez, M., Gonzalez De Santos, P. and Armada, M., “The evolution of robotics research - From industrial robotics to field and service robotics,” IEEE Robotics and Automation Magazine, Vol. 14, Issue 1. pp. 90-103, Mar. 2007.
[6] Hanselman, D. C., Brushless permanent-magnet motor design, McGraw-Hill, New York. 1994.
[7] Honsinger, V. B., “Permanent magnet machines: asynchronous operation,” IEEE Transactions on Power Apparatus and Systems, Vol. 99, pp. 1503-1509, 1980.
[8] Huang, C. C., Design and characteristic analysis of magnetic planetary gears, Master thesis, National Cheng Kung University, Department of Mechanical Engineering, 2006.
[9] Huang, P. W. and Tsai, M. C., “Design of a magnet-switching actuator with high efficiency and auto-locking function,” IEEE Transaction on Magnetics, Vol. 48, no. 11, pp. 4622–4625, Nov. 2012.
[10] Huang, P. W., The research of line-start permanent magnet motors, Master thesis, National Cheng Kung University, Department of Mechanical Engineering, 2008.
[11] Hsueh, P. W., Design and application of state and disturbance estimation for power-assisted control systems, PhD thesis, National Cheng Kung University, Department of Mechanical Engineering, 2013.
[12] Hung, C. Y. and Chi C. T., “Actuator design of a new AC PM contactor with energy-saving and noise-free characteristics, ” 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC), pp. 457-460, Shenzhen, China, Dec. 2010. 
[13] Hwang, S. M., Eom, J. B., Hwang, G. B., Jeong, W. B. and Jung, Y. H., “Cogging torque and acoustic noise reduction in permanent magnet motors by teeth paring,” IEEE Transaction on Magnetics, Vol. 36, no. 5, pp. 3144-3146, 2000.
[14] Isfahani, A. H. and Zadeh, S. V., “Line start permanent magnet synchronous motors: Challenges and opportunities,” Energy, Vol. 34, pp. 1755–1763, 2009.
[15] Kazerooni, H., “Human robot interaction via the transfer of power and information signals,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 20, Issue 2. pp. 450-463, 1990.
[16] Knight, A. M. and McClay, C. I., “The design of high-efficiency line-start motors,” IEEE Transactions on Industry Applications, Vol. 36, pp. 1555-1562, Nov./Dec. 2000.
[17] Kurihara, K. and Rahman, M. A., “High-efficiency line-start interior     permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications, Vol. 40, pp. 789-796, May./Jun. 2004.
[18] Libert, F., Soulard, J. and Engstrom, J., “Design of a 4-pole line start permanent magnet synchronous motor,” Proc. ICEM 2002, Bruges, Belgium, Aug. 2002.
[19] Mahmoudi, A., Kahourzade, S., Rahim, N. A. and Ping, H. W., “Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor,” Progress In Electromagnetics Research, Vol. 124, 383-404, 2012.
[20] Mao, S. H., Design of a direct-drive brushless DC motor for treadmills, Master thesis, National Cheng Kung University, Department of Mechanical Engineering, 2002.
[21] Miller, T. J. E., “Synchronization of line-start permanent magnet ac motors,” IEEE Transaction Power Apparatus and Systems, Vol. 103, pp. 1822-1828, Jul. 1984.
[22] Nagai, K. and Nakanishi, I., “Power assisting control of robotic orthoses considering human characteristics on assisted motion,” Proceedings of the 1999 IEEE International Workshop on Robot and Human Interaction, pp. 1-6, Pisa, Italy, 1999.
[23] Niu, S. X., Ho, S. L. and Fu, W. N., “A novel direct-drive dual-structure permanent magnet machine,” IEEE Transaction on Magnetics, Vol. 46, no. 6, pp. 2036-2039, Jun. 2010.
[24] Niu, S., Chau, K. T., Jiang, J. Z. and Liu, C., “Design and control of a new double-stator cup-rotor permanent-magnet machine for wind power generation,” IEEE Transaction on Magnetics, Vol. 43, no. 6, pp. 2501–2503, Jun. 2007.
[25] Niu, S., Chau, K. T., Li, J. G. and Li, W. L., “Eddy-current analysis of double-stator inset-type permanent magnet brushless machines,” IEEE Transactions on Applied Superconductivity, Vol. 20, no. 3, pp. 1097-1101, Jun. 2010.
[26] Nium, S. X., Ho, S. L. and Fu, W. N., “A novel double-stator double-rotor brushless electrical continuously variable transmission system,” IEEE Transaction on Magnetics, Vol. 49, no. 7, pp. 3909-3912, Jul. 2013.
[27] Ohm, D. Y., “Dynamic model of PM synchronous motors,” Drivetech, Inc., Blacksburg, Virginia.
[28] Paulides, J. J. H., Gysen, B. L. J., Meessen, K. J., Yang, T. and Lomonova, E. A., “Influence of multiple air gaps on the performance of electrical machines with (semi) halbach magnetization,” IEEE Transaction on Magnetics, Vol. 47, no. 10, pp. 2664-2667, Oct. 2011.
[29] Pisek, P., Stumberger, B., Marcic, T. and Virtic, P., “Design analysis and experimental validation of a double rotor aynchronous PM machine used for HEV, ” IEEE Transaction on Magnetics, Vol. 49, no. 1, pp. 152-155, Jan. 2013.
[30] Qu, R. H. and Lipo, T.A., “Dual-rotor, radial-flux, toroidally wound, permanent-magnet machines, ” IEEE Transactions on Industry Applications, Vol. 39, no. 6, pp. 1665-1673, Nov./Dec. 2003.
[31] Rahman, M. A. and Osheiba, A. M., “Performance of a large line-start permanent magnet synchronous motor,” IEEE Transaction on Energy Conversion, Vol. 5, no. 1, pp. 211-217, 1990.
[32] Rasmussen, P. O., Frandsen, T. V., Jensen, K. K. and Jessen, K., “Experimental evaluation of a motor-integrated permanent-magnet gear,” IEEE Transactions on Industry Applications, Vol. 49, no. 2, pp. 850-859, Mar./Apr. 2013.
[33] Rasmussen, P. O., Andersen, T. O., Joergensen, F. T. and Nielsen, O., “Development of a high performance magnetic gear,” 38th Industry Applications Conference Annual Meeting, Vol. 3, pp. 1696-1702, Salt Lake City, USA, Oct. 2003.
[34] Rogers, D. J., Green, T. C. and Silversides, R. W., “A low-wear onload tap changer diverter switch for frequent voltage control on distribution networks, ” IEEE Transactions on Power Delivery, Vol. 29, no. 2, pp. 860-869, Apr. 2014.
[35] Seki, H., Iso, M. and Hori, Y., “How to design force sensorless power assist robot considering environmental characteristics-position control based or force control based,” 28th Annual Conference of the Industrial Electronics Society, pp. 2255-2260, Spain, Nov. 2002.
[36] Tang, R. Y., Modern permanent magnet machines-theory and design, Machine Press, Beijing, 1997.
[37] Tsai, S. W. and Huang, P. W., “Investigation of magnetic bases,” Motor Express on EMTRC NCKU, Vol. 199. Oct. 2006.
[38] Versele, C., De, G. Z., Vallee, F., Hanuise, R., Deblecker, O., Delhaye, M. and Lobry, J., “Analytical design of an axial flux permanent magnet in-wheel synchronous motor for electric vehicle,”13th European Conference on Power Electronics and Applications, pp.1-9, Sep. 2009.
[39] Wang, L. L., Shen, J. X., Luk, P. C. K., Fei, W. Z., Wang, C. F., Hao, H., “Development of a magnetic-geared permanent-magnet brushless motor,” IEEE Transaction on Magnetics, Vol. 45, no. 10, pp. 4578-4581, Oct. 2009.
[40] Wang, Y., Cheng, M., Chen, M., Du, Y. and Chau, K. T., “Design of high-torque-density double-stator permanent magnet brushless motors,” Electric Power Applications IET, Vol. 5, no. 3, pp. 317-323, Mar. 2011.
[41] Yan, G. J., Hsu, Li. Y., Wang, J. H., Tsai, M. C. and Wu, X. Y., “Axial-flux permanent magnet brushless motor for slim vortex pumps, ” IEEE Transaction on Magnetics, Vol. 45, no. 10, pp. 4732-4735, Oct. 2009.
[42] Zheng, P., Bai, J. A., Tong, C. D., Sui, Y., Song, Z. Y. and Zhao, Q. B., “Investigation of a novel radial magnetic-field-modulated brushless double-rotor machine used for HEVs,” IEEE Transaction on Magnetics, Vol. 49, no. 3, pp.1231-1241, Mar. 2013.
[43] Zhu, Z. Q. and Howe, D., “Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors,” IEEE Transaction on Magnetics, Vol. 28, no. 2, pp. 1371-1374, 1992.
[44] Zhu, Z. Q., Wu, L. J. and Xia, Z. P., “An accurate sub-domain model for magnetic field computation in slotted surface-mounted permanent-magnet machines,” IEEE Transaction on Magnetics, Vol. 46, no. 4, pp. 1100-1115, Apr. 2010.
[45] http://112.124.60.228/en/Magnetic_Bases-144-1.html
[46] http://database9.com/blog/?attachment_id=5
[47] http://energy.gov/
[48]http://online.wsj.com/news/articles/SB10000872396390444508504577593520191510252
[49] http://www.akashindustriesindia.com/
[50] http://www.cyberdyne.jp/English/robotsuithal/index.html.
[51] http://www.ecbuyshop.com
[52] http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3803/6175_read-8961/
[53] http://www.hocom.com.tw
[54] http://www.ifr.org/
[55] http://www.moeaboe.gov.tw
[56] http://www.ohgizmo.com
[57] http://www.robotworld.org.tw/index.htm?pid=10&News_ID=4892
[58] http://www.schunk.com/
[59]http://www.teces.si/prikazi.asp?vsebina=info%2Fobvestilo.asp&id=123&jezik=1033
[60] http://www.toyota.com.tw/tech/ultimate_eco_car_parallax/Ultimate_Eco_Car/
[61]http://www.tuv.com/jp/japan/about_us_jp/press_2/news_1/news_contentjp_en_168321.html
[62] http://www.overunity.com/5810/magnetic-gear/#.U7jsNPmSyyJ