簡易檢索 / 詳目顯示

研究生: 林昆標
Lin, Kuen-Biau
論文名稱: 熱電致冷器之三維暫態模擬分析
The 3-D transient simulation of Thermoelectric cooler
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 熱電致冷器致冷
外文關鍵詞: cool, thermoelectric, cooler
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著半導體的高速發展,使電子產品趨於高效率、小尺寸,因此散熱問題越顯重要,而致冷器更隨著半導體科技的進步,其效率也獲得提升,各項優點更使其成為電子產品散熱之最佳利器。
      本文參考各項文獻,訂出一維Module,藉著Fortran的模擬,討論其散熱面積與散熱片對其影響,除此之外,更能任意改變各項參數,藉由數值分析結果使我們更能明白的了解其作動情形,而根據其缺點所在去改善冷器之設計。
      回顧文獻,發現眾學者討論之範圍皆在一維Module上,但實際上致冷器之各項參數之變化並非只有一維,因此有必要去探討其在三維下之作動情況,因此本文之最終目的即是架構三維Module,而藉由一維之結果驗證三維Module之正確性,以更接近事實之情況。

      Along with the semiconductor rapid development, the electronic products tend to the high efficiency, the low size. The questions of radiation are important more and more. Along with the semiconductor science and technology progress, the refrigeration efficiency of TEC also obtains the promotion. It’s merit causes it to become the best sharp weapon of solve the questions of radiation.
      This article refers to each reference documents and set up one-dimensional Module, and utilizing Fortran simulation. Then discusses its influence of radiating surface and the heat sink, in addition, can willfully change each parameter, and we can clearly understand it’s action by the numerical analysis result, and improve the cold design according to its shortcomings.
      When we review those reference documents, We discovers that category of scholars research is all on one-dimensional Module, but in fact each parameter of TEC change not only one-dimension, so we have the necessity to discuss its work in three-dimensional. Therefore the final goal of this article is to construct three-dimensional Module, and prove the accuracy of three-dimensional Module by the one-dimensional result, in order to approaches situation of the fact

    中文摘要..........................................I Abstract.........................................II 致謝............................................III 目錄.............................................IV 表目錄..........................................VII 圖目錄.........................................VIII 符號說明.........................................XI 第一章 緒論.......................................1 1-1 研究動機與目的................................1 1-2 文獻回顧......................................4 1-3 設計流程......................................5 1-4 本文架構......................................6 第二章 熱電致冷器之簡介...........................7 2-1 基本介紹......................................7 2-1-1致冷器之名稱.................................8 2-1-2 致冷器之外型種類............................8 2-1-3致冷器之優缺點...............................9 2-1-4致冷器之用途................................10 2-2 熱電效應.....................................11 2-3 熱電理論三定律...............................13 2-4 基本運作原理.................................13 2-5 TEC module的構造說明.........................15 2-5-1陶瓷基板....................................15 2-5-2熱電材料....................................15 第三章 系統建構與數值方法........................18 3-1 系統建構.....................................18 3-1-1 冷端基板與熱源.............................19 3-1-2 PN半導體...................................20 3-1-3 熱端基板與散熱片...........................20 3-1-4 四周邊界...................................21 3-1-5 COP的算法..................................23 3-2 數值方法(FTCS)...............................25 3-3 格點驗證.....................................28 3-4 時間間距驗證.................................29 3-5 數值結果.....................................29 3-5-1 與參考文獻[1]之比較........................29 3-5-2 與參考文獻[15]之比較.......................30 3-5-3三維之驗證..................................30 3-6 程式流程.....................................31 第四章 結果與討論................................34 4-1 致冷器各項效應之影響.........................34 4-2 改變電流對其影響.............................35 4-3 改變散熱效果.................................36 4-3-1 增加鰭片...................................36 4-3-2 改善熱對流係數.............................37 4-3-3 有無邊界熱傳之比較.........................38 4-4 總結.........................................39 第五章 結論與未來展望............................40 5-1結論..........................................40 5-2未來展望......................................40 參考文獻.........................................42 自述及著作權聲明.................................87

    【1】John. E. Bowers, etc, “Experimental investigation of thin film InGaAsp coolers”,Thermoelectric materials 2000.
    【2】John. E. Bowers, etc, “Integrated cooling for optoelectronic devices”, Photons West (SPIE) Conference Proceedings, 2000.
    【3】N. K. Dutta, etc, “Tunable InGaAs/InGaP laser”, APL, 1997, 1219~1220.
    【4】L. S. Stil’ban and N. A. Fedorovich, Soviet Physics-Tech. Phys.3, 1958.
    【5】J. E. Parrott, Solid-St. Electron. 1, 1960.
    【6】P. E. Gray, The Dynamic Behavior of Thermoelectrc Devices, Joh Wiley and Son, Inc., New York and London, 1960.
    【7】R. P. Bywaters and H. A. Blum, The Transient Behavior of Cascade Thermoelectric Heat Pumps, Energy Conversion Vol.10, p.193-200, 1970.
    【8】B.J. Huang, C.L. Duang, ”System dynamic model and temperature control of a thermoelectric cooler”, J. Refrigeration, vol.23, pp.197-207, 2000.
    【9】B.J. Huang, C.L. Duang, “A design method of thermoelectric cooler”, IEEE, Internal Journal of Refrigeration 23 (2000) 208-218.
    【10】C. Lertsatitthanakorn, J. Hirunlabh, J. Khedari, and H. Scherrer, “Cooling Performance of Free Convected Thermoelectric Air Conditioner”, IEEE, 20th International Conference onThermoelectrics, 2001.
    【11】M Naji, M Alata and M A Al-Nimr, “Transient behaviour of a thermoelectric device”, Proc. Instn Mech. Engrs Xol. 217 Part A: J. Power and Energy.
    【12】X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “A general model for studying effects of interface layers on thermoelectric devices performance” J. Heat and Mass Transfer vol.45, pp.5159-5170, 2002.
    【13】H. T. Chun, X. C. Xuan, C. Yap, and Jeffrey M. Gordon, “Temperature-entropy formulation of thermoelectric thermodynamic cycles” J.PHYSICAL REVIE E, vol.65, 056111.
    【14】X.c. Xuan, “Investigation of thermal contact effect on thermoelectric coolers”, J. Energy Conversion and Management, vol.44, pp.399-410, 2003.
    【15】饒達仁, 莊幸蓉,“高效率微型熱電整合控溫技術”, 11/30, 2003.
    【16】“Numerical Analysis of Thermoelectric Coolers (TEC) using FLOTHERM”, Solectron Technical Centre, June 2002.
    【17】Chih Wu, “ANALYSIS OF WASTE-HEAT THERMOELECTRIC POWER GENERATIRS”,Applied Thermal Engineering, Vol.16. No.1, pp.63-69, 1996.
    【18】Hideyuki Yasuda, Itsuo Ohnaka, Hideaki Kaziura, Tetsuya Yano, ”Synthesis of Porous Thermoelectric device”, 17th International Conference on Thermoelectrics (1998).
    【19】D. Kondratiev, L. Yershova, “TE Coolers Computer Simulation: Incremental Upgrading of Rate Equations Approach”, Proceeding Sixth European Workshop on Thermoelectricity of the European Thermoelectric Society, September 20-21, 2001.

    下載圖示 校內:2007-08-19公開
    校外:2007-08-19公開
    QR CODE