| 研究生: |
林煒喆 Lin, Wei-Tse |
|---|---|
| 論文名稱: |
水冷式機車引擎之三維熱液動分析 Three Dimensional Thermal Hydraulic Analysis for Water-Cooled Motorcycle Engine |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 水冷引擎 、水套 、計算流體力學 、熱對流係數 、共軛熱傳 |
| 外文關鍵詞: | Water-Cooled Engine, Jacket, Computational Fluid Dynamics, Heat Transfer Coefficient, Conjugated Heat Transfer |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水冷引擎的主要散熱方式和水套的幾何設計有直接的影響,因此評估水套的散熱能力對引擎的設計非常重要。本文建立400cc四行程單缸水冷引擎之水套流場分析模型、引擎純熱傳導模型(pure conduction model)及引擎共軛熱傳模型(conjugated heat transfer model)三種模型,透過計算流體力學(Computational Fluid Dynamics, CFD)的方法並搭配相關商用套裝軟體ANSYS Fluent模擬水套內之熱液動性質,並改變不同轉數下之入口流速,觀察流場分佈的改變以及散熱效率的提升,藉此分析水套對引擎溫度分佈的影響。而引擎熱傳模型則能夠觀察水套對引擎整體溫度分佈的影響,在設計初期就可以評估水套對於引擎重要部位如氣閥座與火星塞座之散熱效果及熱分佈情形,並分析冷卻系統能將引擎本體溫度均勻化的程度。
由數值結果可知,當水套入口流速由0.58m/s提升至2.40m/s時,壓差呈現類似拋物線之關係式,由716Pa上升至11663Pa;而平均熱對流係數則呈現線性關係,由2275 W/m2/K增加為6929 W/m2/K。模擬的結果能看出水套內流動緩慢處,如兩墊片開孔中間、環繞汽缸壁處等,藉由流場的分佈可以預估其產生高溫之區域。整體引擎熱傳模型與實驗比較的誤差中,汽缸頭最大誤差為15%、汽缸最大誤差在20%內且其餘量測點則小於10%,而純熱傳導模型與共軛熱傳模型之誤差則在5%以內。最後對排氣閥座進行溫度均勻性的分析,探討不同水套流速對排氣閥座的影響。
By using the computational fluid dynamics (CFD) commercial software ANSYS Fluent, different numerical models are established for a 400c.c four strokes single cylinder water-cooled motorcycle engine. They are jacket flow field model, engine pure conduction model and engine conjugated heat transfer model respectively. With these models, the flow field, thermal hydraulic characteristics and temperature distribution with jacket inlet velocity (or engine speed) can be observed and analyzed. These results could reduce the time and cost to develop a new engine. The numerical results show that when the jacket inlet velocity is increased from 0.58m/s to 2.40m/s, the pressure drop is raised from 716Pa to 11663Pa and seems a parabolic curve with inlet velocity; the average heat transfer coefficient is enhanced from 2275W/m2/K to 6929 W/m2/K and being linear with inlet velocity. Comparing with experiments, the average errors are under 10%.
[1] Annand, W.J.D., “Heat Transfer in the Cylinders of a Reciprocating Internal Combustion Engine,” Proceedings of the Institution of Mechanical Engineers, Vol. 177, pp.973, 1963.
[2] Woschni, G., “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical Paper Series, No. 670931, 1967.
[3] Alkidas, A.C., “Heat transfer characteristics of a spark-ignition engine,” ASME Journal of Heat Transfer, 102 189-193, 1980.
[4] Alkidas, A.C. and Myers, J.P., “Transient heat-flux measurements in the combustion chamber of a spark-ignition engine,” ASME Journal of Heat Transfer, 104 62-67, 1982.
[5] Yoshiteru, E., Shoichi F. and Koh M., “Heat Loss to Combustion Chamber Wall of 4-stroke Gasoline Engine,” Bulletin of JSME, Vol. 28, No. 238, 1985.
[6] Wu, H.W. and Chiu, C.P., “Computer Diagnosis System for Thermal Analysis of Engine Piston,” Wärme- und Stoffübertragung 24,203-210, 1989.
[7] Prasad, R. and Samria, N.K., “Transient Heat Transfer Studies on a Diesel Engine Valve,” International Journal of Mechanical Sciences, Vol. 33, No. 3, pp. 179–195, 1991.
[8] Liu, Y. and Reitz, R.D., “Modeling of Heat Conduction within Chamber Walls for Multidimensional Internal Combustion Engine Simulations,” International Journal of Heat Transfer. Vol.41, No. 6-7, pp.859-869, 1998.
[9] Koch, F.W. and Haubner, F.G., “Cooling System Development and Optimization for DI Engines,” SAE Technical Paper Series, No. 2000-01-0283, 2000.
[10] Yang, L.C., Hamada, A. and Ohtsubo, K., “Engine Valve Temperautre Simulation System,” SAE Technical Paper Series, No. 2000-01-0564, 2000.
[11] Johan, Z., Moraes, A.C.M., Buell, J.C. and Ferencz, R.M., “In-Cylinder Cold Flow Simulation Using a Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 3069–3080, 2001.
[12] Nijeweme, D.J.O., Kok, J.B.W., Stone, C.R. and Wyszynski, L., “Unsteady In-Cylinder Heat Transfer in a Spark Ignition Engine: Experiments and Modelling,” Proceedings of the Institution of Mechanical Engineers, Vol. 215, pp.747-760, 2001.
[13] 李進修,汽機車引擎設計與分析技術,清大出版社,2005。
[14] Laramee, R.S., Garth, C., Dolecish, H., Schneider, J., Hauser, H. and Hagen, H., “Visual Analysis and Exploration of Fluid Flow in a Cooling Jacket,” IEEE, Visualization, pp.623-630, 2005.
[15] Wu, Y.Y., Chen, B.C. and Hsieh, F.C., “Heat Transfer Model for Small-Scale Air-Cooled Spark-Ignition Four-Stroke Engine,” International Journal of Heat and Mass Transfer 49 3895-3905, 2006.
[16] Kim, H.M., Choi, K.S., Kim, C.H. and Lee, D.J., ”Development of Surface Welding Method for Surface Temperature Measurement of an IC Engine’s Combustion Chamber”, Key Engineering Material Vol. 306-308, pp. 453-458, 2006.
[17] Kessler, M.P. and Mendes, A.S., “Numerical Analysis of Flow at Water Jacket of an Internal Combustion Engine,” SAE Technical Paper Series, No. 2007-01-2711, 2007.
[18] Mulemane, A. and Soman, R., “CFD Based Complete Engine Cooling Jacket Development and Analysis,” SAE Technical Paper Series, No. 2007-01-4129, 2007.
[19] Gavali, M.G., Subbarao, A.V. and Marathe, N.V., “Optimization of Water Jacket Using CFD for Effective Cooling of Water-Cooled Diesel Engines,” SAE Technical Paper Series, No. 2007-26-049, 2007.
[20] Kruger, M. and Kessler, M.P., “Numerical Analysis of Flow at Water Jacket of an Internal Combustion Engine,” SAE Technical Paper Series, No. 2008-01-0393, 2008.
[21] Nuutinen, M., Kaario, O. and Larmi, M., “Conjugate Heat Transfer in CI Engine CFD Simulations,” SAE Technical Paper Series, No. 2008-01-0973, 2008.
[22] 張錦裕、陳寒濤、吳明勳,引擎缸內熱源分佈及燃燒研究分析,光陽公司研究報告,2009。
[23] Piccione, R. and Bova, S., “Engine Rapid Shutdown: Experimental Investigation on the Cooling System Transient Response,” ASME Journal of Engineering for Gas Turbines and Power Vol. 132, Issue 7, No. 078801, 2010.
[24] Hazrat, M.A., Masjuki, H.H. and Kalam, M.A., “Steady State Analysis of Coolant Temperature Distribution in A Spark Ignition Engine Cooling Jacket,” International Journal of Mechanical and Materials Engineering, Vol. 7, No. 3, pp234~250, 2012.
[25] Gokhale, A. and Karthikeyan, N. “Optimization of Engine Cooling Through Conjugate Heat Transfer Simulation and Analysis of Fins,” SAE Technical Paper Series, No. 2012-32-0054, 2012.
[26] Jack, T.K. and Ojapah, M.M., “Water-Cooled Petrol Engines: A Review of Considerations in Cooling Systems Calculations with Variable Coolant Density and Specific Heat,” IJAET, Vol. 6, Issue 2, pp.659-667, 2013.
[27] Sharma, S.K., Saini, P.K. and Samria, N.K., “Modelling and Analysis of Radial Thermal Stresses and Temperature Field in Diesel Engine Valves with and without Air Cavity,” IJEST, Vol. 5, No. 2, pp.93-105, 2013.
[28] Pandey, H., Chandrakar, A. and Bhagwat, P.M., “Thermal Stress Analysis of a Speculative IC Engine Piston Using CAE Tools,” IJERA, Vol. 4, Issue 11, pp.60-64, 2014.
[29] “ANSYS Fluent User’s Guide,” ANSYS Inc., 2014.
[30] Kolmogorov, A.N., “The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers,” Dokl. Akad. Nauk. SSSR 30, 299-303, 1941.
[31] Launder, B.E., Morse A., Rodi W. and Spalding, D.B., “The Prediction of Free Shear Flows-A Comparison of the Performance of Six Turbulence Models,” Proceedings of NASA Conference on Free Shear Flows, 1972.
[32] Tennekes, H. and Lumley, J.L., “A First Course in Turbulence,” The MIT Press, 1972.
[33] Launder, B.E. and Spalding, D.B., “The Numerical Computation of Turbulent Flows,” Imperial College of Science and Technology, 1973.
[34] LKF5水冷式引擎溫度量測實驗報告,光陽公司研究報告,2014。
[35] 吳明勳,燃燒室設計與燃燒分析方法研究,光陽公司研究報告,2015。