| 研究生: |
陳威呈 Chen, Wei-Cheng |
|---|---|
| 論文名稱: |
以有機金屬氣相沉積法成長砷化鎵系列長波長雷射及光檢測器之研究 Investigation of GaAs-based Long Wavelength Lasers and Photodetectors Grown by MOVPE |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 雷射 、光檢測器 、有機金屬氣相沉積 |
| 外文關鍵詞: | MOVPE, InGaAs, InGaAsN(Sb), InGaAsN, PL, QW, GaAsSb, XRD, Photodetectors, Lasers |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要著眼於研究以有機金屬氣相沉積法成長砷化鎵系列之長波長雷射暨光檢測器,所使用之材料包含InGaAs/GaAs, InGaAsN(Sb)/GaAs, GaAsSb/GaAs等多種量子井結構,並且針對其磊晶條件、光學特性、以及元件特性做深入地探討。在InGaAs/GaAs量子井雷射部份,我們調整其磊晶參數並將之最佳化後,所製作的雷射具有極低的起振電流密度(140 A/cm2),並能於室溫連續波操作,其雷射放光波長為1.22μm;此外,由於InGaAs/GaAs優良的載子侷限能力,因此其特徵溫度可高達146.2K,顯示InGaAs在低成本的長波長雷射方面,相當具有潛力。另一方面,於低溫、低TBAs/III比的條件下成長高品質、高應力InGaAs/GaAs量子井,也為氮化物半導體—InGaAsN雷射提供良好的研究起點。
為了達成1.3μm操作,InGaAsN/GaAs量子井結構也被應用來作為雷射元件之主動層。藉由降低磊晶溫度、提升DMHy/V比例可以使得不易溶入的氮原子組成提升,然而由於TEGa以及DMHy會產生共裂解效應,影響量子井的厚度以及組成控制,因此我們使用固定DMHy流量僅改變TBAs注入量的方式來改變InGaAsN中氮的組成。而InGaAsN/GaAs量子井的放光效率,在經由一連串的磊晶參數暨熱回火條件最佳化之後,其強度提升了十倍之多。在製作成雷射元件之後,該元件可於1.314μm室溫脈衝波操作,並具有極高的特徵溫度,約可達140K,成功地展示了該材料的潛力。然而由於該元件之起振電流較高(~1.5 KA/cm2),因此尚需要進一步提升其磊晶品質。後續則利用Sb的界面活性效應,降低存在於InGaAsN中的侷限能階,並改善其磊晶界面品質,進而使得InGaAsN的光特性得到大幅提升;此外,常見於InGaAsN材料中的鋁污染效應也可藉由Sb的界面效應移除,進而使得InGaAsNSb/GaAs量子井雷射的起振電流降低。
此外,本論文也針對GaAsSb/GaAs第二型量子井雷射進行研究。藉由低As/III比以及高磊晶成長溫度(610oC),可以提昇銻原子的溶入量,含量最高可達32%而發光波長則高至1.27μm。而提高Sb/V比例不僅無法進一步提升銻的組成,反而因銻原子累積於晶片表面,使得其介面特性和光特性劣化。為了拉伸發光波長,也嘗試製作GaAsSb-InGaAs之雙層量子井結構,並成功使得其波長延伸至1.30μm。此外,本實驗中所製作的兩個GaAsSb/GaAs量子井雷射,成功於1.13以及1.20 μm達成室溫脈衝波雷射操作,並且具有相當高的特徵溫度,分別為146K和130K,是目前已知以有機金屬氣相沉積法成長GaAsSb/GaAs量子井雷射之最高值。
最後,我們也嚐試製作以ITO透明電極之InGaAsN MSM光檢測器,並藉由新穎設計的MIMS結構將其光暗電流比提昇至45倍以上。
本論文成功展示了多種砷化鎵系列的長波長雷射,該雷射普遍具有良好的溫度特性,並且可於為達成低成本、高性能雷射之必要條件之ㄧ,顯示該砷化鎵系列材料續經過特性改善之後,極有潛力可取代現有之磷化銦系列雷射。
The main purpose of the dissertation is to develop the GaAs-based materials, such as including the highly strained InGaAs/GaAs, InGaAsN/GaAs and type II GaAsSb/GaAs quantum wells (QWs) which are capable of delivering long wavelength operations. The growth conditions, optical properties, and devices characteristics are systematically studied. After optimizing the epitaxial parameters, the InGaAs/GaAs lasers were continuous-wave (CW) operated at 1.22 μm under extremely low threshold current density (Jth) ~ 140 A/cm2 (Jth/QW = 46.7 A/cm2/well). The demonstrated InGaAs QW laser has the lowest transparent current density (Jtr) and among the reported InGaAs lasers longer than 1200nm. The characteristic temperature of 146.2K thus obtained indicates the excellent temperature characteristics and good electron confinement. In addition, the high quality InGaAs/GaAs QW grown under low temperature and TBAs/III ratio also provides a good starting point for the InGaAsN alloys by MOVPE.
To extend the emission wavelength, the dilute-nitride alloys -InGaAsN grown by MOVPE were studied. Using low temperature, moderate growth rate, high DMHy/V ratio and low indium composition would enhance nitrogen incorporation. Besides, the DMHy/V ratio was adjusted by altering TBAs flows only to avoid the parasitic reaction between TEGa and DMHy, which eventually led to stable control of indium composition and growth rates of InGaAsN layer. After optimizing the growth parameters and thermal annealing conditions, the PL intensity of InGaAsN/GaAs DQWs was improved by almost 10 times. The InGaAsN edge-emitting lasers were fabricated and showed very good temperature characteristics. The 1.3 μm operation was realized, and the emission wavelength was 1314.52nm. However, the Jth was as high as 1.5 KA/cm2, and still need to be further reduced for actual application. Optimizing InGaAsN alloys via the use of purified nitrogen precursor, and applying the Sb surfactant effect could improve the optical properties of InGaAsN/GaAs lasers.
By using the TMSb surfactant flow, the PL peak intensity and FWHM of InGaAsN/GaAs QWs were both improved. The localization effect was suppressed by introducing the TMSb flow before growing the InGaAsN layer. Furthermore, the aluminum issues of InGaAsN were resolved by the Sb surfactant. The origin of this improvement was attributed to the better crystal quality and lower surface roughness of the Sb-treated samples. The aforementioned advantages demonstrated that the Sb surfactant could be a very effective way to improve the optical properties of InGaAsN layer, enabling the realization of the InGaAsN lasers of low threshold current density grown by MOVPE.
The other high strained QWs, such as GaAsSb/GaAs, were also proposed as possible device structures for long wavelength lasers. The growth conditions and optical properties of GaAsSb alloys were systematically studied. Lowering the AsH3/III ratio and increasing growth temperature to 610 oC could increase the Sb incorporation of GaAsSb. High TMSb flow rate would reduce Sb composition, suppress the growth rate and deteriorate the interface quality due the excess Sb coverage on GaAs surface. The highest Sb composition of GaAsSb obtained was as high as 0.32 and the longest PL wavelength achieved was 1273nm, limited by our MOVPE system design. Therefore, the GaAsSb/InGaAs bi-layer structures were proposed, which showed a longer wavelength at 1295nm with moderate PL intensity. Lastly, two GaAsSb/GaAs DQWs edge-emitting lasers were fabricated. The lasing peaks were 1130 and 1203nm, and these two different diode lasers demonstrated high characteristic temperature of 146K and 130K. To our knowledge, the lasing wavelength and the T0 of the GaAsSb/GaAs DQWs laser are among the best results of GaAsSb/GaAs lasers grown by MOVPE.
Furthermore, the radio frequency (RF)-sputtered indium-tin-oxide (ITO) layers as the transparent contact layer of the metal-semiconductor-metal (MSM) photodetectors (PDs) were studied. The metal-insulator-metal-semiconductor (MIMS) has the highest photo/dark current ratio of 45.29 under 0.5 V bias for the much improved surface roughness between the SiO2 layer and the InGaAsN bulk. Further improvements on the material quality of InGaAsN layers, an increase in the absorption layer thickness, and the use of AR-coating were necessary to obtain higher responsivity and quantum efficiency.
Despite the higher threshold current density of InGaAsN and GaAsSb QW lasers, the foregoing GaAs-based lasers thus demonstrated have good temperature characteristics, and are also capable of delivering 1.3 μm operation. In conclusion, the GaAs-based materials are experimentally proved as suitable candidates for replacing the conventional InP-based lasers.
[1] J. S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., vol. 17, pp. 880-891, 2002.
[2] Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol. 23, pp. 45-47, 1973.
[3] A. Sugimura, K. Daikoku, N. Imoto and T. Miya, “Wavelength dispersion characteristics of single-mode fibers in low-loss region,” IEEE J. Quantum Electron., vol. QE-16, pp.215-225, 1980.
[4] Please refer to the official website of ofs optics: http://www.ofsoptics.com/index.php ALLWAVE○R Flex ZWP single mode fiber.
[5] M. Yano, H. Imai and M. Takusagawa, “Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers,” J. Appl. Phys., vol. 52, pp. 3172-3175, 1981.
[6] N. K. Dutta and R. J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination,” Appl. Phys. Lett., vol. 38, pp.407-409, 1981.
[7] A. Karim, P. Abraham, D. Lofgreen, Y.-J. Chiu, J. Piprek, and John Bowers: ‘Wafer bonded 1.55 μm vertical-cavity lasers with continuous-wave operation up to 105°C’, Appl. Phys. Lett., vol. 78 , pp. 2632-2633, 2001.
[8] Jayaraman, J. C. Geske, M. H. MacDougal, F. H. Peters, T. D. Lowes, and T. T. Char: ‘Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70 °C’, Electron. Lett., vol. 34 , pp. 1405-1407, 1998.
[9] R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, F. Köhler and M.-C. Amann: “Vertical-cavity surface-emitting laser diodes at 1.55 μm with large output power and high operation temperature”, Electron. Lett., vol. 37, pp. 1295-1296, 2001.
[10] S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren: “88°C, continuouswave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers”, Appl. Phys. Lett., vol. 78, pp. 1337-1339, 2001.
[11] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 µm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett., vol. 73, pp. 2564-2566, 1998.
[12] G. T. Liu, A. Stinz, H. Li, K. J. Malloy, L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett., vol. 35, pp. 1163-1165, 1999.
[13] O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3-µm InAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photon. Technol. Lett., vol. 14, pp. 1231- 1233, 2002.
[14] J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov, D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm”, Electron. Lett., vol. 36, pp. 1384-1385, 2000.
[15] T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett., vol. 80, pp. 2445-2447, 2005.
[16] R. Marcks von Würtemberg, P. Sundgren, J. Berggren, M. Hammar, M. Ghisoni, E. Ödling, V. Oscarsson and J. Malmquist, “1.3 µm InGaAs vertical-cavity surface-emitting lasers with mode filter for single mode operation,” Appl. Phys. Lett., vol. 85, pp. 4851-4853, 2004.
[17] P. Sundgren, J. Berggren, P. Goldman, and M. Hammar, “Highly strained InGaAs/GaAs multiple quantum-wells for laser applications in the 1200–1300 nm wavelength regime,” Appl. Phys. Lett., vol. 87, 071104, 2005.
[18] I. Vurgaftman, J. R. Meyer, N. Tansu and L. J. Mawst, “(In)GaAsN-based type-II "W" quantum-well lasers for emission at λ= 1.55 µm,” Appl. Phys. Lett., vol. 83, pp. 2742-2744, 2003.
[19] F. Quochi, J.E. Cunningham, M. Dinu, J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 µm”, Electron. Lett., vol. 36, pp. 2075-2076, 2000.
[20] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, S. Sugou, “Continuous-wave operation of 1.30µm GaAsSb/GaAs VCSELs”, Electron. Lett., vol. 37, pp. 566-567, 2001.
[21] M. R. Gokhale, P. V. Studenkov, J. Wei and S. R. Forrest, “Low-threshold current, high-efficiency 1.3-μm wavelength aluminum-free InGaAsN-based quantum-well lasers,”IEEE Photon. Technol. Lett., vol. 12, pp.131-133, 2000.
[22] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) (λ = 1.19-1.31 μm) quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 444-446, 2002.
[23] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 µm room–temperature GaAs–based quantum–dot laser.” Appl. Phys. Lett., vol. 73, pp. 2564 – 2566, 1998.
[24] O. B. Shchekin and D. G. Deppe, “Low–threshold high–T0 1.3–µm InAs quantum–dot lasers due to p–type modulation doping of the active region,” IEEE Photon. Technol. Lett., vol. 14, pp. 1231 – 1233, 2002.
[25] J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Z. I. Alferov, and D. Bimberg, “InAs–InGaAs quantum dot vcsels on GaAs substrates emitting at 1.3 µm.” Electron. Lett., vol. 36, pp. 1384 – 1385, 2000.
[26] A. R. Kovsh, D. A. Livshits, N. A. Maleev, A. E. Zhukov, V. M. Ustinov, J. S. Wang, R. S. Hsiao, G. Lin, J. Y. Chi, and N. N. Ledentsov, “1.3 micron single lateral mode lasers based on InAs qds and InGaAsN quantum wells,” in Proc. North American Molecular Beam Epitaxy Conference, Keystone, Colorado, USA, 2003.
[27] N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm CW laser emission from InGaSb quantum–dot vertical–cavity surface–emitting laser on GaAs substrate.” Electron. Lett., vol. 40, pp. 1120 – 1121, 2004.
[28] V. M. Ustinov, A. Y. Egorov, V. A. Odnoblyudov, N. V. Kryzhanovskaya, Y. G. Musikhin, A. F. Tsatsul’nikov, and Z. I. Alferov, “InAs/InGaAsN quantum dots emitting at 1.55 µm grown by molecular beam epitaxy.” J Cryst. Growth, vol. 251, pp. 388 – 391, 2003.
[29] S. Makino, T. Miyamoto, M. Ohta, T. Kageyama, Y. Ikenaga, F. Koyama, and K. Iga, “Growth characteristics of GaInNAs/GaAs quantum dots by chemical beam epitaxy.” J Cryst. Growth, vol. 251, pp. 372 –377, 2003.
[30] S. R. Johnson, C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu, S. Q. Yu, D. Ding, and Y.-H. Zhang, “GaAsSb/GaAs band alignment evaluation for long-wave photonic applications,” J. Cryst. Growth, vol. 251, pp. 521-525, 2003.
[31] C. B. Cooper, R. R. Saxena, and M. J. Ludowise, J. Electron. Mater., vol. 11, pp. 1001, 1982.
[32] G. B. Stringfellow and M. J. Cherng “OMVPE growth of GaAs1-xSbx: solid composition,” J. Cryst. Growth, vol. 64, pp. 413-415, 1983.
[33] G. B. Stringfellow, “A critical appraisal of growth mechanisms in MOVPE,” J. Cryst. Growth, vol. 68, pp. 111-122, 1983.
[34] M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, "Low-threshold operation of 1.3-mu m GaAsSb quantum-well lasers directly grown on GaAs substrates", IEEE Photon. Technol. Lett., vol. 12, pp. 774-776, 2000.
[35] S. W. Ryu and P. D. Dapkus, "Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates", Electron. Lett., vol. 36, pp. 1387-1388, 2000.
[36] M. S. Noh, R. D. Dupuis, D. P. Bour, G. Walter and N. Holonyak, "Long-wavelength strain-compensated GaAsSb quantum-well heterostructures laser grown by metalorganic chemical vapor deposition", Appl. Phys. Lett., vol. 83, pp. 2530-2532, 2003.
[37] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance”, Jpn. J. Appl. Phys. 1, vol. 35, pp. 1273-1275, 1996.
[38] A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, G. Ebbinghaus, “Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 µm VCSEL with GaInNAs active region”, Electron Lett., vol. 38, pp. 322-324, 2002.
[39] A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker, J.F. Klem, K.D. Choquette, D.K. Serkland and K.M. Geib, “OC-48 capable InGaAsN vertical cavity lasers”, Electron. Lett., vol. 37, pp. 355-536, 2001.
[40] J. C. Phillips, “Bonds and Bands in Semiconductors”, eds. A. M. Alper, J. L. Margrave, and A. S. Nowick, Academic Press, New York, (1973)
[41] T. Kitatani, K. Nakahara, M. Kondow, K. Uomi and T. Tanaka, “ A 1.3-µm GaInNAs/GaAs Single-Quantum-Well Laser Diode with a High Characteristic Temperature over 200 K”, Jpn. J. Appl. Phys., vol. 39, Part 2, pp. L86-L87, 2000.
[42] B. Borchert, A.Y. Egorov, S. Illek, M. Komainda, H. Riechert, “1.29 µm GaInNAs multiple quantum-well ridgewaveguide laser diodes with improved performance”, Electron. Lett., vol. 35, pp. 2204-2206, 1999.
[43] T. Takeuchi, Y.-L.Chang, M. Leary, A. Tandon, H.-C. Luan, D. Bour, S. Corzine, R. Twist and M. Tan, “Low threshold 1.3 µm InGaAsN vertical cavity surface emitting lasers grown by metalorganic vapor chemical vapor deposition”, Proc. LEOS 2001, San Diego, CA, USA, 2001, Paper PD1.2.
[44] J. A. Van Vechten, and T. K. Bergstresser, “Electronic Structures of Semiconductor Alloys,” Phys. Rev. B, vol. 1, pp. 3351-3358, 1970.
[45] L. G. Ferreira, S. W. Wei, and A. Zunger, “First-principles calculation of alloy phase diagrams: The renormalized-interaction approach,” Phys. Rev. B, vol. 40 pp. 3197-3231, 1989.
[46] C. W. Coldren, S. G. Spruytte, J. S. Harris, and M. C.Larson, “Group III nitride-arsenide long wavelength lasers grown by elemental source molecular beam epitaxy”, J. Vac. Sci. Technol. B, vol. 18, pp. 1480-1483, 2000.
[47] A. Pomarico, M. Lomascolo, R. Cingolani, A. Y. Egorov, and H. Riechert, “Effects of thermal annealing on the optical properties of InGaNAs/GaAs multiple quantum wells”, Semicond. Sci. Technol., vol. 17, pp. 145-149, 2002.
[48] I. A. Buyanova, G. Pozina, P. N. Hai, N. Q. Thinh, J. P. Bergman, W. M. Chen, H. P. Xin, and C. W. Tu, “Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol.77, pp. 2325-2327, 2000.
[49] T. Kitatani, K.Nakahara, M. Kondow, K. Uomi, and T. Tanaka, “Mechanism analysis of improved GaInNAs optical properties through thermal annealing”, J. Cryst. Growth, vol. 209, pp. 345-349, 2000.
[50] V. Gambin, W. Ha, M. A. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris Jr., “GaInNAsSb for 1.3-1.6 μm long wavelength lasers grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp.795-800, 2002.
[51] S. R. Bank, M. A. Wistey, L. L. Goddard, H. B. Yuen, V. Lordi, and J. S. Harris Jr., “Low-threshold continuous-wave 1.5μm GaInNAsSb lasers grown on GaAs,” IEEE J. Quantum Electron., vol. 40, pp. 656-664, 2004.
[52] X. Yang, M. J. Jurkovic, J. B. Heroux, and W. I. Wang, “Low threshold InGaAsN/GaAs single quantum well lasers grown by molecular beam epitaxy using sb surfactant.” Electron. Lett., vol. 35, pp. 1082 – 1083, 1999.
[53] J. B. Heroux, X. Yang, and W. I. Wang, “Quantum confined stark effect in GaInNAs/GaAs multiple quantum wells.” IEE Proc. Optoelectronics, vol. 150, pp. 92 – 95, 2003.
[54] N. Grandjean, J. Massies, and V. H. Etgens, “Delayed relaxation by surfactant action in highly strained III–V semiconductor epitaxial layers.” Phys. Rev. Lett., vol. 69, pp. 796 –799, 1992.
[55] H. Shimizu, K. Kumada, S. Uchiyama, and A. Kasukawa, “High performance CW 1.26 µm GaInNAsSb–SQW and 1.20 µm GaInAsSb–SQW ridge lasers.” Electron. Lett., vol. 36, pp. 1701 –1703, 2000.
[56] W. Ha, V. Gambin, M. Wistey, S. Bank, H. Yuen, S. Kim, and J. S. Harris, “Long wavelength GaInNAsSb/GaNAsSb multiple quantum well lasers.” Electron. Lett., vol. 38, pp. 277 –278, 2002.
[57] J.Y. Park, T.S. Kim, T.V. Cuong, C.S. Park, C.-H. Hong, “Influence of Sb surfactant on the structural and optical properties of InGaAsN/GaAs multi-quantum wells grown by metalorganic chemical vapor deposition,” Phys. Stat. Sol. (c), vol.0, pp. 2761–2764, 2003.
[58] T. Ishizuka, T. Yamada, Y. Iguchi, T. Saito, T. Katsuyama, S. Takagishi, “Considerable improvement of optical property of GaInNAs/GaAs quantum well,” J. Crystal. Growth, vol. 272, pp.760-764, 2004.
[59] W. C. Chen, Y. K. Su, R. W. Chuang, and S. H. Hsu, “Investigation of the Optical Properties of InGaAsN(Sb) Quantum Wells Grown by MOVPE,” J. Vac. Sci. Technol. A, vol. 24, pp. 591-594, 2006.
Chapter 2
[60] F. Bugge, U. Zeimer, H. Wenzel, G. Erbert, and M. Weyers, “Interdiffusion in highly strained InGaAs-QWs for high power laser diode applications,” J. Cryst. Growth, vol. 272, pp. 531-537, 2004.
[61] D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama and K. Iga, “Growth of highly strained GaInAs/GaAs quantum wells for 1.2 μm wavelength lasers,” J. Cryst. Growth, vol. 209 pp. 27-36, 2000.
[62] N. Tansu and L. J. Mawst, “High-performance strain-compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum well diode lasers,” IEEE Photon. Technol. Lett., vol. 13, pp. 179-181, 2001.
[63] T. Kondo, D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, E. Gouardes, F. Koyama and K. Iga, “Lasing Characteristics of 1.2 µm Highly Strained GaInAs/GaAs Quantum Well Lasers,” Jpn. J. Appl. Phys., vol. 40, pp. 467-471, 2001.
[64] S. Mogg, N. Chitica, R. Schatz and M. Hammar, “Properties of highly strained InGaAs/GaAs quantum wells for 1.2-µm laser diodes,” Appl. Phys. Lett., vol. 81, pp. 2334-2336, 2002.
[65] N. Tansu, J. –Y. Yeh, and L.J. Mawst, “Extremely low threshold-current-density InGaAs quantum-well lasers with emission wavelength of 1215–1233 nm,” Appl. Phys. Lett., vol. 82, pp. 4038-4040, 2003.
[66] L. W. Sung and H. H. Lin, “Highly strained 1.24-µm InGaAs/GaAs quantum-well lasers,” Appl. Phys. Lett., vol. 83, pp. 1107-1109, 2003.
[67] I.L. Chen, W.C. Hsu, H.C. Kuo, H.C. Yu, C.P. Sung, C.M. Lu, C.H. Chiou, J.M. Wang, Y.H. Chang, T.D. Lee, and J.S. Wang, “Low-Threshold-Current-Density, Long-Wavelength, Highly Strained InGaAs Laser Grown by Metalorganic Chemical Vapor Deposition ,” Jpn. J. Appl. Phys., vol. 44, pp.7485-7487, 2005.
[68] G. Adolfsson, S.M. Wang, M. Sadeghi and A. Larsson, “High-performance long-wavelength InGaAs=GaAs multiple quantum-well lasers grown by molecular beam epitaxy,” Electron. Lett., vol. 43, pp. 454-456, 2007.
[69] J. W. Matthews and A.E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol. 27, pp. 118-125, 1974.
[70] R. People and J.C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeSi/Si strain-layer hetrostructure,” Appl. Phys. Lett., vol.47, pp.322-324, 1985.
[71] C. W. Snyder, B.G. Orr, D. Kessler, L.M. Sander, “Effect of strain on surface morphology in highly strained InGaAs films,” Phys. Rev. Lett., vol. 66, pp. 3032-3035, 1991.
[72] J. H. Van der Merwe, “Crystal Interfaces. Part II. Finite Overgrowths,” J. Appl. Phys., vol. 34, pp. 123-127, 1962.
[73] F. R. N. Nabarro, Theory of crystal dislocations , Clarendon, Oxford, 1967, p. 75.
[74] S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature-dependent transition from two-dimensional to three-dimensional growth in highly strained InxGa1−xAs/GaAs (0.36≦x≦1) single quantum wells ,” Appl. Phys. Lett., vol. 61, pp. 3139-3141, 1992.
[75] G. L. Price, “Critical-thickness and growth-mode transitions in highly strained InxGa1-xAs films,” Phys. Rev. Lett., vol. 66, pp. 469-472, 1992.
[76] N. Grandjean, J. Massies, M. Leroux, J. Leymarie, A. Vasson and A. M. Vasson, “Improved GaInAs/GaAs heterostructures by high growth rate molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2664-2666, 1994.
[77] F. Bugge, U. Zeimer, M. Sato, M. Weyers, G. Tránkle, “MOVPE growth of highly strained InGaAs/GaAs quantum wells,” J. Crystal Growth, vol. 183, pp. 511-518, 1998.
[78] F. Bugge, U. Zeimer, S. Gramlich, I. Rechenberg, J. Sebastian, G. Erbert and M. Weyers, “Effect of growth conditions and strain compensation on indium incorporation for diode lasers emitting above 1050 nm,” J. Crystal Growth, vol. 221, pp. 496-502, 2000.
[79] H. Toyoshima, T. Niwa, J. Yamazaki, A. Okamoto, “Suppression of In surface segregation and growth of modulation-doped N-AlGaAs/InGaAs/GaAs structures with a high In composition by molecular-beam epitaxy,” J. Appl. Phys., vol. 75, pp. 3908- 3913, 1994.
[80] K. Kim and Y. H. Lee, “Temperature-dependent critical thickness for strained-layer hetrostructures.” Appl. Phys. Lett., vol. 67, pp.2212-2214, 1995.
[81] K. N. Tu et al, Electronic Thin Film Science, NY, US: Macmillan, 1992
[82] F. C. Frank and J. H. van der Merve, “One-dimensional dislocations-Static theory,” Proc. Roy. Soc. (London) A 198, pp. 205-216, 1949.
[83] M. Volmer and A. Weber, “Keimbildung in übersättigten Gebilden,” Z. Physik. Chem., vol. 119, pp. 277-286, 1926.
[84] I. N. Stranski and L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Klasse, vol. 146, pp.797, 1937.
[85] Matthews, John Wauchope (1975). Epitaxial Growth. New York: Academic Press. ISBN 0-12-480901-4.
[86] A. G. Cullis, A. J. Pidduck, and M. T. Emeny, “Misfit Dislocation Sources at Surface Ripple Troughs in Continuous Heteroepitaxial Layers”, Phys. Rev. Lett., vol. 75, pp. 2368-2371, 1995.
[87] A. G. Cullis, A. J. Pidduck, and M. T. Emeny, “Growth morphology evolution and dislocation introduction in the InGaAs/GaAs heteroepitaxial system,” J. Cryst. Growth, vol. 158, pp. 15-27, 1996.
[88] A. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski-Krastanow transition and epitaxial island growth”, Phys. Rev. B, vol. 66, pp. 081305, 2002.
[89] H. Toyoshima, T. Niwa, J. Yamazaki, and A. Okamoto, “In surface segregation and growth-mode transition during InGaAs growth by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 63, pp. 821-823, 1993.
[90] C. W. Snyder, J. F. Mansfield, and B. G. Orr, “Kinetically controlled critical thickness for coherent islanding and thick highly strained pseudomorphic films of InxGa1-xAs on GaAs(100),” Phys. Rev. B, vol. 46, pp. 9551-9554, 1992.
[91] Hao Lee, Roger R. Lowe-Webb, Weidong Yang, and Peter C. Sercel, “Formation of InAs/GaAs quantum dots by molecular beam epitaxy: Reversibility of the islanding transition,” Appl. Phys. Lett., vol. 71, pp. 2325-2327, 1997.
[92] A. G. Cullis, D. J. Norris, M. A. Migliorato, and M. Hopkinson, “Surface elemental segregation and the Stranski–Krastanow epitaxial islanding transition,” Appl. Surf. Sci., vol. 244, pp. 65-70, 2005.
[93] S. W. Ryu and P. D. Dapkus, “Highly strained InGaAs QW VCSEL with lasing wavelength at 1.22 μm,” Electron. Lett., vol. 37, pp. 177-178, 2001.
[94] H. Shimizu, K. Kumada, S. Uchiyama, and A. Kasukawa, “1.2 μm range GaInAs SQW lasers using Sb as surfactant,” Electron. Lett., vol. 36, pp.1379-1381, 2000.
[95] T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, “High-power highly strained InGaAs quantum-well lasers operating at 1.2 μm,” IEEE Photon. Technol. Lett., vol 14, No 7, pp.887-889, 2002.
[96] F. Salomonsson, C. Asplund, P. Sundgren, G. Plaine, S. Mogg, and M. Hammer, “Low-threshold, high-temperature operation of 1.2 μm InGaAs vertical cavity lasers,” Electron. Lett., vol. 37, pp. 957-958, 2001.
[97] A. Mereuta, S. Bouchoule, F. Alexandre, I. Sagnes, J. Decobert, and A. Ougazzaden, “Performance comparison of strained InGaNAs/GaAs and InGaAs/GaAs QW laser diodes grown by MOVPE,” Electron. Lett., vol. 36, pp. 436-437, 2000.
[98] S. Sato and S. Satoh, “Room-temperature continuous-wave operation of 1.24-μm GaInNAs lasers grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron., vol. 5, pp. 707-710, 1999.
[99] N. Tansu, Y. L. Chang, T. Takeuchi, D. P. Bour, S. W. Corzine, M. R. T. Tan, and L. J. Mawst, “Temperature analysis and characteristics of highly strained InGaAs-GaAsP-GaAs (λ > 1.17 μm) quantum-well lasers,” IEEE J. Quantum Electron., vol. 38, pp. 640-651, 2002.
[100] Y. Sakata, T. Nakamura, S. Ae, T. Terakado, Y. Inomoto, T. Torikai, H. Hasumi, “Selective MOVPE growth of InGaAsP and InGaAs using TBA and TBP,” J. Electron. Mater., vol. 25, pp. 401-406, 1996.
[101] F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers , “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett., vol. 79, pp.1965-1967, 2001.
[102] D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, and K. Iga, “1.17-μm highly strained GaInAs-GaAs quantum-well laser,” IEEE Photon. Technol. Lett., vol. 11, pp.946-948, 1999.
[103] T. Kitatani, M. Kondow, and T. Tanaka, “Effects of thermal annealing procedure and a strained intermediate layer on a highly-strained GaInNAs/GaAs double-quantum-well structure,” J. Cryst. Growth, vol. 221, pp. 491-495, 2000.
[104] W. Li, T. Jouhti, C. S. Peng, J. Konttinen, P. Laukkanen, E. –M. Pavelescu, M. Dumitrescu, and M. Pessa, “Low-threshold-current 1.32-µm GaInNAs/GaAs single-quantum-well lasers grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 79, pp. 3386-3388, 2001.
[105] H. Y. Liu, M. Hopkinson, P. Navaretti, M. Gutierrez, J. S. Ng, and J. P. R. David, “Improving optical properties of 1.55 µm GaInNAs/GaAs multiple quantum wells with Ga(In)NAs barrier and space layer,” Appl. Phys. Lett., vol. 83, pp. 4951-4953, 2003.
[106] E. –M. Pavelescu, C. S. Peng, T. Jouhti, J. Konttinen, W. Li, M. Pessa, M. Dumitrescu, and S. Spanulescu, “Effects of insertion of strain-mediating layers on luminescence properties of 1.3-µm GaInNAs/GaNAs/GaAs quantum-well structures,” Appl. Phys. Lett., vol. 80, pp. 3054-3056, 2002.
[107] M. C. Y. Chan, C. Surya, and P. K. A. Wai, “The effects of interdiffusion on the subbands in GaxIn1–xN0.04As0.96/GaAs quantum well for 1.3 and 1.55 µm operation wavelengths,” J. Appl. Phys., vol. 90, pp. 197-201, 2001.
[108] C. S. Peng, E. –M. Pavelescu, T. Jouhti, J. Konttinen, I. M. Fodchuk, Y. Kyslovsky, and M. Pessa, “Suppression of interfacial atomic diffusion in InGaNAs/GaAs heterostructures grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 80, pp. 4720-4722, 2002.
[109] X. Yang, M. J. Jurkovic, J. B. Heroux and W. I. Wang, “Low threshold InGaAsN/GaAs single quantum well lasers grown by molecular beam epitaxy using Sb surfactant,” Electron. Lett., vol. 35, pp. 1082-1083, 1999
[110] R.J. Potter, N. Balkan, H. Carrère, A. Arnoult, E. Bedel and X. Marie, “Effect of nitrogen fraction on the temperature dependence of GaNAs/GaAs quantum-well emission,” Appl. Phys. Lett., vol. 82, pp. 3400-3402, 2003.
[111] A. Kaschner, T. Lüttgert, H. Born, A. Hoffmann, A. Yu. Egorov and H. Riechert, “Recombination mechanisms in GaInNAs/GaAs multiple quantum wells,” Appl. Phys. Lett., vol. 78, pp. 1391-1393, 2001.
[112] L. Grenouillet, C. Bru-Chevallier, G. Guillot, P. Gilet, P. Duvaut, C. Vannuffek, A. Million and A. Chenevas-Paule, “Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well,” Appl. Phys. Lett., vol. 76, pp. 2241-2243, 2000.
Chapter 3
[113] S. G. Spruytte, M. C. Larson, W. Wampler, C. W. Coldren, P. Krispin, H. E. Petersen, S. Picraux, K. Ploog and J. S. Harris, “Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental sourece molecular beam epitaxy, ” J. Cryst. Growth, vol. 227/228, pp. 506-515, 2001.
[114] S. G. Spruytte, “MBE growth of nitride-arsenides for long-wavelength optoelectronics,” PhD Thesis, Stanford University, April, 2002.
[115] H. Riechert, A. Ramakrishnan and G. Steinle, “Development of InGaAsN-based 1.3 μm VCSELs,” Semicond. Sci. Tech., vol. 17, pp. 892-897, 2002.
[116] J. C. Harmand, G. Unfaro, L. Largeau and G. LeRoux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAaN, GaInAsN, and GaAsSbN,” Appl. Phys. Lett., vol. 77, pp. 2482-2484, 2000.
[117] S. G. Spruytte, C. W. Coldren, A. F. Marshall and J. S. Harris, “MBE growth of nitride-arsenide materials for long-wavelength optoelectronics,” Proceedings Spring 2000 MRS Meeting, 2000.
[118] C. Jin, Y. Qiu, S. A. Nikshin and H. Temkin, “ Nitrogen incorporation kinetics in metalorganic molecular beam epitaxy of GaAsN,” Appl. Phys. Lett., vol. 74, pp. 3516-3518, 1999.
[119] R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth,” J. Electron. Mater., vol. 28, pp. 963-969, 1999.
[120] I. H. Ho and G. B. Stringfellow, “Incomplete solubility in nitride alloys,” Mater. Res. Soc. Symp. Proc., vol. 449, pp. 871-880, 1997.
[121] M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption of dilute GaAsN alloy layers”, Jpn. J. Appl. Phys., vol. 31, pp. L853-L855, 1992.
[122] M. Kondow, K. Uomi, K. Hosomi, T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source”, Jpn. J. Appl. Phys., vol. 33, pp. L1056-L1058, 1994.
[123] S. Sakai, Y. Ueta and Y. Terauchi, “Band Gap Energy and Band Lineup of III-V Alloy Semiconductors Incorporating Nitrogen and Boron,” Jpn. J. Appl. Phys., vol. 32, pp. 4413-4417, 1993.
[124] K. Uesugi, I. Suemune, “Bandgap energy of GaNAs alloys grown on (001) GaAs by metalorganic molecular beam epitaxy”, Jpn. J. Appl. Phys., vol. 36, pp. L1572-L1575, 1997.
[125] S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin, H. Temkin, “Luminescence of as-grown and thermally annealed GaAsN/GaAs”, Appl. Phys. Lett., vol. 72, pp.1857-1859, 1998.
[126] U. Tisch, E. Finkman, and J. Salzman, “The anomalous bandgap bowing in GaAsN”, Appl. Phys. Lett., vol. 81, pp. 463-465, 2002.
[127] W. G. Bi, C. W. Tu, “Bowing paramter of the band-gap energy of GaNxAs1-x”, Appl. Phys. Lett., vol. 70, pp. 1608-1610, 1997.
[128] S.-H. Wei, A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys”, Phys. Rev. Lett., vol. 76, pp. 664-667, 1996.
[129] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. olson, S. R. Kurtz, “Band anticrossing in GaInNAs alloys”, Phys. Rev. Lett., vol. 82, pp.1221-1224, 1999.
[130] A. Lindsay and E.P. O’Reilly, “Theory of enhanced bandgap non-parabolicity in GaNxAs1-x and related alloys”, Solid. State Commun., vol. 112, pp.443-447, 1999.
[131] J. Wu, W. Shan, and W. Walukiewicz, “Band anticrossing in highly mismatched III-V semiconductor alloys”, Semicond. Sci. Technol., vol. 17, pp.860-869, 2002.
[132] W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. olson, S.R. Kurtz, “Effect of nitrogen on the band structure of GaInNAs alloy”, J. Appl. Phys., vol. 86, pp. 2349-2351, 1999.
[133] C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz, and J. M. Olson, “Large, nitrogen-induced increase of the electron effective mass in InyGa1-yNxAs1-x”, Appl. Phys. Lett., vol. 76, pp. 2409-2411, 2000.
[134] P. N. Hai, W. M. Chen, I. A. Buyanova, H. P. Xin, and C. W. Tu, “Direct determination of electron effective mass in GaNAs/GaAs quantum wells”, Appl. Phys. Lett., vol. 77, pp. 1843-1845, 2000.
[135] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz, K. Hingerl, W. Jantsch, D. E. Mars, and W. Walukiewicz, “Band structure and optical properties of InyGa1-yAs1-xNx alloys”, Phys. Rev. B, vol. 65, 035207, 2001.
[136] M. Hetterich, M. D. Dawson, A. Yu. Egorov, D. Bernklau, and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content”, Appl. Phys. Lett., vol. 76, pp. 1030-1032, 2000.
[137] W. J. Fan, S. T. Ng, S. F. Yoon, M. F. Li, and T. C. Chong, “Effect of tensile strain in barrier on optical gain spectra of GaInNAs/GaAsN quantum wells,” J. Appl. Phys., vol. 93, pp. 5836–5838, 2003.
[138] S. Sato, “Low threshold and high characteristic temperature 1.3 µm range GaInNAs lasers grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 39, pp. 3403–3405, 2000.
[139] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and C. Nauka, “Effect of nitrogen on the electronic band structure of group III-N-V alloys,” Phys. Rev. B, vol. 62, pp. 4211-4214, 2000.
[140] S. Kurtz, R. Reedy, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. MaMahon and J.M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors,” J. Cryst. Growth, vol. 234, pp. 318-322, 2002.
[141] A. Ougazzaden, Y. Le Bellego, E.V.K. Rao, M. Juhel, L. Leprince and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and teriarybutylarsine,” Appl. Phys. Lett., vol.70, pp. 2861-2863, 1997.
[142] K. Volz, T. Torunski, B. Kunert, O. Rubel, S. Nau, S. Reinhard, W. Stolz, “Specific structural and compositional properties of (GaIn)(NAs) and their in.uence on optoelectronic device performance,” J. Cryst. Growth, vol. 272, pp. 739–747, 2004.
[143] Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama and K. Iga, “Low temperature growth of GaInNAs/GaAs quantum wells by metalorganic chemical vapor deposition using tertiarybutylarsine,” J. Appl. Phys., vol.84, pp. 6409-6411, 1998.
[144] A. Moto, S. Tanaka, N. Ikoma, T. Tanabe, S. Takagishi, M. Takahashi and T. Katsuyama, “Metalorganic Vapor Phase Epitaxial Growth of GaNAs Using Tertiarybutylarsine (TBA) and Dimethylhydrazine (DMHy),” Jpn. J. Appl. Phys., vol.38, pp. 1015-1018, 1999.
[145] Y. C. Kao, T. P. E. Broekaet, H. Y. Liu, S. Tang, I. H. Ho, and G. B. Stringfellow, Mater. Res. Soc. Symp. Proc. vol.423, pp.335, 1996.
[146] J. Neugebauer and C. G. Van de Walle, “Electronic structure and phase stability of GaAs1-xNx alloys,” Phys. Rev. B, vol. 51, pp.10568-10571, 1995.
[147] G. B. Stringfellow and G. Homi, “Hydride VPE Growth of GaAs for FET's,” J. Electrochem. Soc., vol. 124, pp. 1806-1811, 1977.
[148] S. Kurtz, R. Reedy, B. Keyes, G.D. Barber, J.F. Geisz, D.J. Friedman, W.E. McMahon and J.M. Olson, “Evaluation of NF3 versus dimethylhydrazine as N sources for GaAsN,” J. Cryst. Growth, vol. 234, pp. 323-326, 2002.
[149] A. Moto, M. Takahashi, S. Takagishi, “Hydrogen and carbon incorporation in GaInNAs,” J. Cryst. Growth, vol. 221, pp. 485-490, 2000.
[150] A. Yu. Egorova, D. Bernklau, B. Borchert, S. Illek, D. Livshits, A. Rucki, M. Schuster, A. Kaschner, A. Hoffmann, Gh. Dumitras, M.C. Amann, H. Riechert, “Growth of high quality InGaAsN heterostructures and their laser application,” J. Cryst. Growth, vol. 227–228, pp. 545–552, 2001.
[151] D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson, R. Reedy, “Nonlinear dependence of N incorporation on In content in GaInNAs,” J. Cryst. Growth, vol. 195, pp. 438-443, 1998.
[152] T. Miyamoto, T. Kageyama, S. Makino, D. Schlenker, F. Koyama, K. Iga, “CBE and MOCVD growth of GaInNAs,” J. Cryst. Growth, vol. 209, pp. 339-344, 2000.
[153] C. Jin, S. A. Nikishin, V. I. Kuchinskii, and H. Temkin, and M. Holtz, “Metalorganic molecular beam epitaxy of (In)GaAsN with dimethylhydrazine,” J. Appl. Phys., vol. 91, pp.56-64, 2002.
[154] J. O. Maclean, D. J. Wallis, T. Martin, M. R. Houlton and A. J. Simons, “Nitrogen incorporation into GaAs(N), Al0.3Ga0.7As(N) and In0.15Ga0.85As(N) by chemical beam epitaxy (CBE) using 1,1-dimethylhydrazine,” J. Cryst. Growth,, vol. 231, pp. 31–40, 2001.
[155] Z. Pan, L. Li, W. Zhang, X. Wang, Y. Lin and R. Wu, “Growth and characterization of GaInNAs/GaAs by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth, vol. 227–228, pp. 516–520, 2001.
[156] A. J. Ptak, Sarah Kurtz, C. Curtis, R. Reedy, and J. M. Olson, “Incorporation effects in MOCVD-grown (In)GaAsN using different nitrogen precursors,” J. Cryst. Growth, vol. 243, pp. 231-237, 2002.
[157] A. Hashimoto, T. Furuhata, T. Kitano, A. K. Nguyen, A. Masuda and A. Yamamoto, “RF-MBE growth and Raman scattering characterization of lattice-matched GaInNAs on GaAs(0 0 1) substrate,” J. Cryst. Growth, vol. 227–228, pp. 532–535, 2001.
[158] W. A. Harrison, “Electronic structure and the properties of solids”, Dover, New York, 1989, p.176.
[159] H. Ch. Alt, A. Yu. Egorov, H. Riechert, B. Wiedemann, J.D. Meyer, R.W. Michelmann, K. Bethge, “Local vibrational mode absorption of nitrogen in GaAsN and InGaAsN layers grown by molecular beam epitaxy,” Physica B, vol. 302-303 , pp. 282-290, 2001.
[160] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin and N. Karam, “Structural changes during annealing of GaInAsN,” Appl. Phys. Lett., vol. 78, pp. 748-750, 2001.
[161] S. F. Cheng, R. L. Woo, A. M. Noori, G. Malouf, M. S. Goorsky and R. F. Hicks, “Metalorganic chemical vapor deposition of InGaAsN using dilute nitrogen trifluoride,” J. Cryst. Growth, vol. 299, pp. 277-281, 2007.
[162] T. Kitatani, M. Kondow, K. Nakahara, M. C. Larson, Y. Yazawa, M. Okai and K. Uomi, “Nitrogen incorporation rate, optimal growth temperature, and AsH3-flow rate in GaInNAs growth by gas-source MBE using N-radicals as an N-source,” J. Cryst. Growth, vol. 201-202, pp. 351-354, 1999.
[163] F. Höhnsdorf, J. Koch, C. Agert, W. Stolz, “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy)”, J. Cryst. Growth, vol. 195, pp. 391-396, 1999.
[164] R. Bhat, C. Caneau, L. Salamanca-Riba, W. Bi and C. Tu, “Growth of GaAsN/GaAs, GaInAsN/GaAs and GaInAsN/GaAs quantum wells by low-pressure organometallic chemical vapor deposition,” J. Cryst. Growth, vol. 195, pp. 427-437, 1998.
[165] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, and S.A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium,” J. Cryst. Growth, vol. 217, pp. 47-54, 2000.
[166] H. P. Xin, K. L. Kavanagh, Z. Q. Zhu and C. W. Tu, “Observation of quantum dot-like behavior of GaInNAs in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett., vol. 74, pp. 2337-2339, 1999.
[167] A. M. Blagnov, P. A. Merz, J. L. Ustinov, V. M. Vlasov, A. S. Kovsh, A. R. Wang, J. S. Wang, L. Wei and J. Y. Chi, “Near-field magneto-photoluminescence of quantum-dot-like composition fluctuations in GaAsN and InGaAsN alloys,” Physica E, vol. 21, pp. 385-389, 2004.
[168] R. Kudrawiec, E.-M. Pavelescu, J. Andrzejewski and J. Misiewicz, A. Gheorghiu, T. Jouhti and M. Pessa, “The energy-fine structure of GaInNAs/GaAs multiple quantum wells grown at different temperatures and postgrown annealed,” J. Appl. Phys., vol. 96, pp. 2909-2913, 2004.
[169] R. Kudrawiec, G. Sek and J. Misiewicz, “Explanation of annealing-induced blueshift of the optical transitions in GaInAsN/GaAs quantum wells,” Appl. Phys. Lett., vol. 83, pp. 2772-2774, 2003.
[170] M. Albrecht, V. Grillo, T. Remmele, H. P. Strunk, A. Yu. Egorov, Gh. Dumitras, H. Riechert, A. Kaschner, R. Heitz and A. Hoffmann, “Effect of annealing on the In and N distribution in InGaAsN quantum wells,” Appl. Phys. Lett., vol. 81, pp. 2719-2721, 2002.
[171] M. Vening, D. J. Dunstan and K. P. Homewood: “Evidence for EL6 (Ec− 0.35 eV) acting as a dominant recombination center in n-type horizontal Bridgman GaAs,” J. Appl. Phys., vol. 61, pp. 5047-5050, 1987.
[172] T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs/GaAs quantum well grown by solid source molecular beam epitaxy,” J. Vac. Sci. Technol. B, vol. 21, pp. 2324-2328, 2003.
[173] Z. C. Niu, H. Q. Ni, X. H. Xu, W. Zhang, Y. Q. Xu, and R. H. Wu, “Electronic properties of GaAs/GayIn1-yNxAs1-y-xSby superlattices,” Phys. Rev. B, vol. 68, 235326, 2003.
[174] C. Asplund, P. Sundgren, and M. Hammar, in Proceedings of the 14th lnP and Related Materials Conference, Stockholm, Sweden, p. 619, 2000.
[175] F. Alexandre, E. Gouardes, O. Gauthier-Lafaye, N. Bouadma, A.Vuong, and B. Thedrez, “Nitride-based long-wavelength lasers on GaAs substrates,” J. Mater. Sci.-Mater. El., vol. 13, pp. 633-642, 2002.
[176] E. V. Rao, A. Ougazzaden, Y. Le Bellego, and M. Juhel, “Optical properties of low bandgap GaAs N layers: Infleunce of post-growth treatments,” Appl. Phys. Lett., vol. 72, pp. 1409–1401, 1998.
[177] T. Kageyama, T. Miyamoto, S. Makino, F. Koyama, and K. Iga, “Thermal annealing of GaInNAs–GaAs quantum wells grown by chemical beam epitaxy and its effects on photoluminiscence,” Jpn. J. Appl. Phys., vol. 38, pp. L298–L300, 1999.
[178] H. P. Xin, K. L. Kavanagh, M. Kondow, and C. W. Tu, “Effects of rapid thermal annealing on GaInNAs–GaAs multiple quantum wells,” J. Cryst. Growth, vol. 201–202, pp. 419–422, 1999.
[179] G. Jaschke, R. Averbeck, L. Geelhaar and H. Riechert, “Low threshold InGaAsN/GaAs lasers beyond 1500 nm,” J. Cryst. Growth, vol. 278, pp. 224–228, 2005.
[180] S. Sato and S. Satoh, “1.3μm continuous-wave operation of GainNAs lasers grown by metal organic chemical vapour deposition,” Electron. Lett., vol. 35, pp. 1251-1252 , 1999.
[181] S. Sato and S. Satoh, “High-Temperature Characteristic in 1.3 μm-Range Highly Strained GaInNAs Ridge Stripe Lasers Grown by Metal–Organic Chemical Vapor Deposition,” IEEE Photon. Technol. Lett., vol. 11, pp. 1560-1562, 1999.
[182] M. Kawaguchi, T. Miyamoto, E. Gouardes, D. Schlenker, T. Kondo, F. Koyama and K. Iga, “Lasing Characteristics of Low-Threshold GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 40, pp. L744–L746, 2001.
[183] Y. Qu, C. Y. Liu, S. G. Ma, S. Yuan, B. Bo, G. Liu, and H. Jiang, “High-Power Ridge Waveguide InGaAsN Lasers Fabricated With Pulsed Anodic Oxidation,” IEEE Photon. Technol. Lett., vol. 16, pp. 2406-2408, 2004.
[184] C. Y. Liu, S. F. Yoon, S. Z. Wang, W. J. Fan, Y. Qu, and S. Yuan, “Fabrication of High-Performance InGaAsN Ridge Waveguide Lasers With Pulsed Anodic Oxidation,” IEEE Photon. Technol. Lett., vol. 16, pp. 2409-2411, 2004.
[185] F. Hohnsdorf, J. Koch, S. Leu, W. Stolz, B. Borchert and M. Druminski, “Reduced threshold current densities of (Galn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28-1.38pm,” Electron. Lett., vol. 35, pp. 571-572 , 1999.
[186] J.-Y. Yeh, N. Tansu, and L.J. Mawst, “Long wavelength MOCVD grown InGaAsN–GaAsN quantum well lasers emitting at 1.378–1.41 µm,” Electron. Lett., vol. 40, pp. 739-741, 2004.
[187] N. Tansu, J.-Y. Yeh and L. J. Mawst, “Low-threshold 1317-nm InGaAsN quantum-well lasers with GaAsN barriers,” Appl. Phys. Lett., vol. 83, pp. 2512-2514, 2003.
[188] J.-Y. Yeh, L. J. Mawsta and N. Tansu, “Characteristics of InGaAsN/GaAsN quantum well lasers emitting in the 1.4-μm regime,” J. Cryst. Growth, vol. 272, pp. 719-725, 2004.
[189] T. Takeuchi, Y.-L. Chang, M. Leary, D. Mars, Y. K. Song, S.D. Roh, H.-C. Luan, L.-M. Mantese, A. Tandon, R. Twist, S. Belov, D. Bour, M. Tan, “Al Contamination in InGaAsN Quantum Wells Grown by Metalorganic Chemical Vapor Deposition and 1.3_m InGaAsN Vertical Cavity Surface Emitting Lasers,” Jpn. J. Appl. Phys., vol. 43, pp. 1260–1263, 2004.
[190] K.-S. Kim, S.-J. Lim, K.-H. Kim, J.-R. Yoo, T. Kim; Y.-J. Park, “MOVPE grown 1360-nm GaInNAs quantum-well laser with multibarrier structures,” IEEE Photon. Technol. Lett., vol. 16, pp. 1994-1996, 2004.
[191] P.-C. Chiu, N.-T. Yeh, C.-C. Hong, T. P. Hsieh, Y.-T. Tsai, W.-J. Ho, J.-I. Chyi, “InGaAsN/GaAs quantum-well lasers using two-step and nitride passivation growth,” Appl. Phys. Lett., vol. 87, 091115, 2005.
[192] T. D. Lee, C. S. Wang and I. T. Wu, “Development of 1.3μm Lasers,” Section 6, Conference on Optoelectronics Devices, Hsin Chu, Taiwan, 2002.
Chapter 4
[193] M. Kawaguchi, T. Miyamoto, E. Gouardes, T. Kondo, F. Koyama, and K. Iga, “Photoluminescence dependence on heterointerface for metalorganic chemical vapor deposition grown GaInNAs/GaAs quantum wells,” Appl. Phys. Lett., vol.80, pp. 962-965, 2002.
[194] I. A. Buyanova , W. M. Chen , B. Monemar , H. P. Xin, and C. W. Tu, “Photoluminescence characterization of GaNAs/GaAs structures grown by molecular beam epitaxy,” Mater. Sci. Eng. B, vol. 75, pp. 166–169, 2000.
[195] E. Gouardes, F. Alexandre, O. Gauthier-Lafaye, A. Vuong-Becaert, V. Colson, B. Thedrez, “Studies of MOVPE growth conditions for the improvement of GaInAsN on GaAs substrates for 1.3 μm laser emission,” J. Cryst. Growth, vol. 248, pp. 446–450, 2003.
[196] T. Kageyama, T. Miyamoto, S. Makino, F. Koyama, K. Iga, “Thermal Annealing of GaInNAs/GaAs Quantum Wells Grown by Chemical Beam Epitaxy and Its Effect on Photoluminescence,” Jpn. J. Appl. Phys., vol 38, pp. L298-L300, 1999.
[197] P. Sundgren, C. Asplund, K. Baskar, and M. Hammar, “Morphological instability of GaInNAs quantum wells on Al-containing layers grown by metalorganic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 82, pp. 2431-2433, 2003.
[198] T. Takeuchi, Y.-L. Chang, M. Leary, D. Mars, Y. K. Song, S. D. Roh, H. –C. Luan, L. –M. Mantese, A. Tandon, R. Twist, S. Belov, D. Bour and M. Tan, “Al Contamination in InGaAsN Quantum Wells Grown by Metalorganic Chemical Vapor Deposition and 1.3 µm InGaAsN Vertical Cavity Surface Emitting Lasers,” Jpn. J. Appl. Phys., vol. 43, pp. 1260-1263, 2004.
[199] T. Takeuchi, Y.-L. Chang, M. Leary, D. Mars, H. –C. Luan, S. D. Roh, L. –M. Mantese, Y. K. Song, A. Tandon, R. Twist, S. Belov, D. Bour and M. Tan, “Al Gettering for InGaAsN in Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 43, pp. L1085-L1087, 2004.
[200] T. Nishida, M. Takaya, S. Kakinuma, T. Kaneko, “4.2-mW GaInNAs long-wavelength VCSEL grown by metalorganic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron., vol. 11, pp. 958-961, 2005.
[201] T. Geppert, J. Wagner, K. Köhler, P. Ganser, and M. Maier, “Preferential formation of Al-N bonds in low N-content AlGaAsN,” Appl. Phys. Lett., vol. 80, pp. 2081-2083, 2002.
[202] J. C. Harmand, L. H. Li, G. Patriarche, and L. Travers, “GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 µm emission,”Appl. Phys. Lett., vol. 84, pp. 3981-3983, 2004.
[203] W. C. Chen, Y. K. Su, R. W. Chuang and S. H. Hsu, “Triple Luminescence Peaks Observed in the InGaAsN/GaAs Single Quantum Well Grown by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 45, pp. 3537–3539, 2006.
[204] M.A. Pinault, E. Tournie, “On the origin of carrier localization in Ga1–xInxNyAs1–y/GaAs quantum wells,” Appl. Phys. Lett., vol.78, pp. 1562-1564, 2001.
[205] Y. P. Varshni, Temperature dependence of the energy gap in semiconductors,” Physica (Utrecht), vol. 34, pp.149-154, 1967.
[206] S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett., vol. 80, pp 2087-2089, 2002.
Chapter 5
[207] M. Peter, R. Kiefer, F. Fuchs, N. Herres, K. Winkler, K. -H. Bachem, and J. Wagner, “Light-emitting diodes and laser diodes based on a Ga1 – xInxAs/GaAs1 – ySby type II superlattice on InP substrate,” Appl. Phys. Lett., vol. 74, pp. 1951-1953, 1999.
[208] D. L. Smith, and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys, vol. 62, pp. 2545-2548, 1987.
[209] X. Sun, S. Wang, J. S. Hsu, R. Sidhu, X. G. Zheng, X. Li, J. C. Campbell, A. L. Holmes, “GaAsSb: a novel material for near infrared photodetectors on GaAs substrates,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 817-822, 2002.
[210] Y. -H Zhang, “Continuous wave operation of InAs/InAsxSb1 – x midinfrared lasers,” Appl. Phys. Lett., vol. 66, pp. 118-120, 1995.
[211] S. P. Watkins, O. J. Pitts, C. Dale, X. G. Xu, M. W. Dvorak, N. Matine, and C. R. Bolognesi, “Heavily carbon-doped GaAsSb grown on InP for HBT applications,” J. Cryst. Growth, vol. 221, pp. 59-65, 2000.
[212] S. Neumann, W. Prost, and F. –J. tegude, “Growth of highly p-type doped GaAsSb:C for HBT application,” in Proc. 15th IEEE Inter. Conf. Indium Phosphide and Related Materials (IPRM 2003), Santa Barbara, California, USA, 2003, pp.575-578.
[213] M. W. Dvorak, and C. R. Bolognesi, “On the accuracy of direct extraction of the heterojunction-bipolar-transistor equivalent-circuit model parameters Cπ, CBC, and RE” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1640-1648, 2003.
[214] T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo, “GaAsSb: A novel material for 1.3 μm VCSELs,” Electron. Lett., vol. 34, pp. 2127-2129, 1998.
[215] T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi and A. Kamei, "Room-temperature pulsed operation of GaAsSb GaAs vertical-cavity surface-emitting lasers", Electron. Lett., vol. 35, pp. 903-904, 1999.
[216] C. B. Cooper, R. R. Saxena, and M. J. Ludowise, “The Organometallic VPE Growth of GaSb and Ga(As,Sb) using Triethy Lantimony,” J. Electron. Mater., vol. 11, pp. 1001-1010, 1982.
[217] M. J. Cherng, G. G. Stringfellow, and R. M. Cohen, “Organometallic vapor phase epitaxial growth of GaAs0.5Sb0.5,” Appl. Phys. Lett., vol. 44, pp. 677-679, 1984.
[218] J. R. Pessetto and G. B. Stringfellow, “AlxGa1−xAsySb1−y phase diagram,” J. Crystal Growth, vol. 62, pp. 1-6, 1983.
[219] M. F. Gratton, R. G. Goodchild, L. Y. Juravel, and J. C. Woolley, “Miscibility gap in the GaAsySb1-y system,” J. Electron. Mater., vol. 8, pp. 25-29, 1979.
[220] M. Takenaka, M. Inoue, J. Shirafuji, and Y. Inuishi, “Growth of GaAs1-xSbx crystals by steady-state liquid phase epitaxy,” J. Phys. D, vol. 11, pp. L91-L95, 1978.
[221] C.B. Cooper, R. R. Saxena, and M. J. Ludowise, “OMVPE growth of AlGaSb and AlGaAsSb,” Electron. Lett., vol. 16, pp 892-893, 1980.
[222] M. Peter, K. Winkler, M. Maier, N. Herres, J. Wagner, D. Fekete, K. H. Bachem and D. Richards, “Realization and Modeling of a Pseudomorphic (Gaas1-Xsbx-Inyga1-Yas)/Gaas Bilayer-Quantum Well,” Appl. Phys. Lett., vol. 67, pp. 2639-2641, 1995.
[223] B. E. Hawkins, A. A. Khandekar, J. Y. Yeh, L. J. Mawst and T. F. Kuech, “Effects of gas switching sequences on GaAs/GaAs1-Sb-y(y) superlattices,” J. Crystal Growth, vol. 272, pp. 686-693, 2004.
[224] G. M. Peake, K. E. Waldrip, T. W. Hargett, N. A. Modine and D. K. Serkland, “OMVPE of GaAsSbN for long wavelength emission on GaAs,” J. Crystal Growth, vol. 261, pp. 398-403, 2004.
[225] M. Pristovsek, M. Zorn, U. Zeimer and M. Weyers, “Growth of strained GaAsSb layers on GaAs(001) by MOVPE,” J. Crystal Growth, vol. 276, pp. 347-353, 2005.
[226] J. -Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells,” J. Crystal Growth, vol. 287, pp. 615-619, 2006.
[227] A. A. Khandekar, J. Y. Yeh, L. J. Mawst, X. Y. Song, S. E. Babcock and T. F. Kuech, “Growth of strained GaAs1-ySby layers using metalorganic vapor phase epitaxy,” J. Crystal Growth, vol. 298, pp. 154-158, 2007.
[228] K.R. Evans, C.E. Stutz, E. N. Taylor and J. E. Ehret, “Incorporation/desorption rate variation at heterointerfaces in III–V molecular-beam epitaxy,” J. Vac. Sci. Tech. B, vol. 9, pp. 2427-2432, 1991.
[229] S. W. Ryu, and P. D. Dapkuss, “Optical characterization and determination of conduction band offset of type-II GaAsSb/InGaAs QW,” Semicond. Sci. Technol., vol. 19, pp. 1369-1372, 2004.
[230] S. W. Ryu, and P. D. Dapkus, “Room temperature operation of type-II GaAsSb/InGaAs quantum well laser on GaAs substrates,” Electron. Lett., vol. 38, pp. 564-565, 2002.
[231] J. F. Klem, O. Blum, S. R. Kurtz, I. J. Fritz, and K. D. Choquette, “GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates,” J. Vac. Sci. Technol. B, vol. 18, pp. 1605-1608, 2000.
[232] G. A. Vawter and D. R. Myers, “Useful design relationships for the engineering of thermodynamically stable strained-layer structures,” J. Appl. Phys., vol. 65, pp. 4769-4773, 1989.
[233] E. R. Glaser, B. R. Bennett, B. V. Shanabrook, and R. Magno, “Photoluminescence studies of self-assembled InSb, GaSb, and AlSb quantum dot heterostructures,” Appl. Phys. Lett., vol. 68, pp. 3614-3616, 1996.
[234] M. Dinu, J. E. Cunningham, F. Quochi and J. Shah, “Optical properties of strained antimonide-based heterostructures,” J. Appl. Phys., vol. 94, pp. 1506-1512, 2003.
[235] F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu and J. Shah, “Continuous-wave operation of a 1.3-mu m GaAs1-xSbx-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature,” IEEE Photon. Technol Lett., vol. 13, pp. 921-923, 2001.
[236] Y. S. Chiu, M. H. Ya, W. S. Su and Y. F. Chen, “Properties of photoluminescence in type-II GaAs1-xSbx/GaAs multiple quantum wells,” J. Appl. Phys., vol. 92, pp. 5810-5813, 2002.
[237] X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang and W. K. Ge, “Selectively excited photoluminescence of GaAs1-xSbx/GaAs single quantum wells,” Appl. Phys. Lett.,vol. 81, pp. 3795-3797, 2002.
[238] D. S. Jiang, L. F. Bian, X. G. Liang, K. Chang, B. Q. Sun, S. Johnson and Y. H. Zhang, “Structural and optical properties of GaAs1-xSbx/GaAs heterostructure quantum wells,” J. Crystal Growth, vol. 268, pp. 336-341, 2004.
[239] R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. Le Roux and L. Largeau, “Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAs1-xSbx on GaAs,” J. Appl. Phys., vol. 89, pp. 5473-5477, 2001.
[240] K. G. Merkel, V. M. Bright, M. A. Marciniak, C. L. A. Cerny and M. O. Manasreh, “Temperature-Dependence of the Direct-Band-Gap Energy and Donor-Acceptor Transition Energies in Be-Doped GaAsSb Lattice-Matched to InP,” Appl. Phys. Lett., vol. 65, pp. 2442-2444, 1994.
[241] R. Lukic-Zrnic, B. P. Gorman, R. J. Cottier, T. D. Golding, C. L. Littler and A. G. Norman, “Temperature dependence of the band gap of GaAsSb epilayers,” J. Appl. Phys., vol. 92, pp. 6939-6941, 2002.
[242] O. Blum and J. F. Klem, “Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3 μm,” IEEE Photon. Technol. Lett., vol. 12, pp. 771-773, 2000.
[243] P. W. Liu, M. H. Lee, H. H. Lin and J. R. Chen, “Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 38, pp. 1354-1355, 2002.
[244] Irene Ecker, Susanne Menzel and Jurgen Joos, “Gas Source Molecular Beam Epitaxy of GaAsSb Based Laser Diodes for the Long Wavelength Range,” Annual report, Dept. of Optoclectronics, university of Ulm, 1999.
[245] S. Q. Yu, X. Jin, S. R. Johnson and Y. H. Zhang, “Gain saturation and carrier distribution effects in molecular beam epitaxy grown GaAsSb/GaAs quantum well lasers,” J. Vac. Sci. Technol. B, vol. 24, pp. 1617-1621, 2006.
[246] Z. B. Chen, S. R. Johnson, C. Navarro, S. Chaparro, J. Xu, N. Samal, J. Wang, Y. Cao, S. Yu, and Y. -H. Zhang, “Strain compensated GaAsP/GaAsSb/GaAs 1.3 μm lasers grown on GaAs using MBE,” in Proc. Conference on Laser Electro-Opitcs 2001, Baltimore, 2001, pp.209-210.
[247] P. W. Liu, G. H. Liao and H. H. Lin, “1.3 μm GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 40, pp. 177-179, 2004.
[248] S.-Q. Yu, D. Ding, J.-B. Wang, N. Samal, X. Jin, Y. Cao, S. R. Johnson, and Y.-H. Zhang, “High performance GaAsSb/GaAs quantum well lasers,” J. Vac. Sci. Technol. B, vol. 25, pp. 1658-1663, 2007.
[249] K. Hild, S. J. Sweeney, S. Wright, D. A. Lock, S. R. Jin, I. P. Marko, S. R. Johnson, S. A. Chaparro, S.-Q. Yu, and Y.-H. Zhang, “Carrier recombination in 1.3 mu m GaAsSb/GaAs quantum well lasers,” Appl. Phys. Lett., vol. 89, 173509, 2006.
Chapter 6
[250] M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Okai, “Room-Temperature Pulsed Operation of GaInNAs Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys., vol. 35, pp.5711-5713, 1996.
[251] M. Kondow, T. Kitatani, S. Nakatsuka, M.C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor lasers”, IEEE J. Sel. Top. Quantum Electron., vol. 3, pp.719-730, 1997.
[252] W. K. Cheah, W. J. Fan, S. F. Yoon, D. H. Zhang, B. K. Ng, W. K. Loke, R. Liu, A. T. S. Wee, “1.31 μm GaAs-based heterojunction p–i–n photodetectors using InGaAsNSb as the intrinsic layer grown by molecular beam epitaxy,” Thin Solid Films, vol. 515, pp. 4441–4444, 2007.
[253] S. H. Hsu, Y. K. Su, S. J. Chang, W. C. Chen, and H. L. Tsai, “InGaAsN metal-semiconductor-metal photodetectors with Modulation-doped heterostructures,” IEEE Photonics Technol. Lett., vol. 18, pp. 547-549, 2006.
[254] Y. K. Su, S. H. Hsu, R. W. Chuang S. J. Chang, and W. C. Chen “GaInNAs metal-semiconductor-metal near-infrared photodetectors”, IEE Proc. Optoelectron., vol. 153, pp. 128-130, 2006.
[255] W. C. Chen, Y. K. Su, R. W. Chuang, H. C. Yu, and B. Y. Chen, “InGaAsN MSM Photodetectors Using RF-Sputtered ITO Layer as Transparent Schottky Contacts,” in Proc. SPIE, vol. 6585, p. 658528, 2007.
[256] Y. K. Su, W. C. Chen, R. W. Chuang, S. H. Hsu, and B. Y. Chen, “InGaAsN Metal–Semiconductor–Metal Photodetectors with Transparent Indium Tin Oxide Schottky Contacts,” Jpn. J. Appl. Phys., vol. 46, pp. 2373-2376, 2007.
[257] S. J. Chang, C. K. Wang, Y. K. Su, C. S. Chang, T. K. Lin, T. K. Ko, and H. L. Liu, “GaN MIS Capacitors with Photo-CVD SiNxOy Insulating Layers,” J. Electrochem. Soc., vol. 152, G423-G426, 2005.
[258] R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, A.K. Barau,“Degradation of tin-doped indium-oxide film in hydrogen and argon plasma,” J. Appl. Phys., vol. 62, pp. 912-916, 1987.
[259] D. Kim, Y. Han, J.-S. Cho, S.-K. Koh, “Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films, vol. 377-378, pp.81-86, 2000.
[260] C. G. Granqvist, A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, vol. 411, pp. 1-5, 2002.
[261] R. A. Mair, J. Y. Lin, H. X. Jiang, E. D. Jones, A. A. Allerman, and S. R. Kurtz, “Time-resolved photoluminescence studies of InxGa1–xAs1–yNy,” Appl. Phys. Lett., vol. 76, pp.188-190, 2000.
[262] S. Kurtz, J. F. Geisz, B. M. Keyes, W. K. Metzger, D. J. Friedman, J. M. Olson, A. J. Ptak, R. R. King, and N. H. Karam, “Effect of growth rate and gallium source on GaAsN,” Appl. Phys. Lett., vol. 82, pp. 2634-2636, 2003.
[263] G. Leibiger, C. Krahmer, J. Bauer, H. Herrnberger, and V. Gottschalch, “Solar cells with (BGaIn)As and (InGa)(NAs) as absorption layers,” J. Cryst. Growth, vol. 272, pp. 732-738, 2004.
[264] W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, “In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts,” Appl. Phys. Lett., vol. 65, pp. 1930-1932, 1994.
[265] R. J. Nelson and R. G. Sobers, “Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs,” J. Appl. Phys., vol. 49, pp. 6103-6108, 1978.
[266] G. W. p’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B, vol. 35, pp. 8281-8284, 1987.
Chapter 7
[267] J. Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer, and N. Tansu, “Long wavelength emission of InGaAsN/GaAsSb type II "W" quantum wells,” Appl. Phys. Lett., vol. 88, 051115, 2006.
[268] K. Nunna, S. Iyer, L. Wu, J. Li, S. Bharatan, X. Wei, and R. T. Senger “Nitrogen incorporation and optical studies of GaAsSbN/GaAs single quantum well heterostructures,” J. Appl. Phys., vol. 102, 053106, 2007.
[269] K. Iga, “Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution,” Jpn. J. Appl. Phys., vol. 47, pp.1-10, 2008.
[270] H. –G. Park, S. –H. Kim, S. –H. Kwon, Y. –G. Ju, J. –K. Yang, J. –H. Baek, S. –B. Kim, and Y. -H. Lee, “Laser Electrically Driven Single-Cell Photonic Crystal, Science, vol. 305, pp. 1444-1447, 2004.