| 研究生: |
連啟翔 Lien, Chi-Hsiang |
|---|---|
| 論文名稱: |
三維膠原蛋白細胞外基質結構之多光子微製作與顯微技術 Multiphoton Microfabrication and Microscopy of Three-dimensional Collagen Extracellular Matrixes |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 多光子激發 、多光子製作 、細胞外基質結構 、金奈米柱 、偏極光之二倍頻顯微術 |
| 外文關鍵詞: | multiphoton excitation, multiphoton fabrication, extracellular matrix, gold nanorods, polarization-resolved second harmonic generation |
| 相關次數: | 點閱:99 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用多光子交聯(multiphoton crosslinking)機制來進行細胞外基質結構(extracellular matrix,ECM)之三維(three-dimensional,3D)微製作,並藉由多光子顯微術做細胞與ECM交互作用探討,其中包含四個研究主題:1)經由一個液晶模組調製之偏極光二倍頻(second harmonic generation,SHG)顯微鏡來改善其取影像之能力與提出其分析法進行解析;2)使具形態分布的生物組織影像外,更能提供分子或超分子(supramolecular)結構等級之成分資訊的能力;3)以及多光子激發微製作技術之發展有具金奈米柱(gold nanorods,AuNRs)之3D微米polyacrylamide和牛血清蛋白(bovine serum albumin,BSA)結構;4)並實現以多光子激發所獲取的高解析度之生物組織灰階影像可直接進行3D仿生骨架製作的逆向工程系統。
實驗結果顯示利用史托克向量(Stokes vector)偏振分析法可檢測液晶模組調製之偏光二倍頻顯微鏡並達成無機械式之具180度線性偏振激發,其中橢圓偏振殘留小於0.08 (ellipticity < 0.08)。藉由圓柱對稱的染色(Di-8-ANEPPS)之單層巨型微胞(giant unilamellar vesicles,GUV)顯微影像展現偏振激發影像的正確性並符合理論依據。在SHG影像上,以代表性的肌腱與肌肉組織進行量測,其偏振反應與分析取得之組織特性(helical pitch angles)皆吻合文獻結果。更進一步地結合先前分析法進而發展以單一像素進行分析的新偏振解析法,並針對混型的膠原蛋白膠體結構之等效螺旋角(α-helix pitch angle)進行研究,其實驗結果顯示此方法可分辨在不同比例的I型與III型混合的膠原蛋白膠體並與肽鏈模型之結果一致。另外,本文也成功地製作出3D具AuNRs之acrylamide與BSA微米結構,也證實其具有表面電漿子(surface plasmons)之特性。最後,為了提升此技術的應用性以及製作仿生骨架之能力,結合生物組織灰階影像並以此轉換模型直接進行製作,此法證實可利用ECM精準的複製出切片的老鼠心臟組織結構,並具有很大的潛力在細胞與組織研究的應用。
In this thesis, multiphoton excitation microscopy (MPEM) and fabrication of three-dimensional (3D) extracellular matrices (ECM) at submicron scale have been investigated. The primary works focus on: 1) improving the polarization-resolved second harmonic generation (SHG) imaging via a liquid crystal modulator located in the infinity space; 2) providing its analysis method with great potential to use in tissue characterization, as extracting molecular and supramolecular structural details; 3) developing the multiphoton fabrication capability, including to make a 3D polymerized polyacrylamide or crosslinked bovine serum albumin (BSA) microstructures containing gold nanorods (AuNRs); and, 4) providing a powerful 3D fabrication scaffold tool based on directly map the greyscale image data from the high resolution MPEM.
First, the performance in terms of polarization purity is validated using Stokes vector polarimetry, and then found to have minimal residual polarization ellipticity. We also demonstrated the performance by imaging cylindrically symmetric giant unilamellar vesicles with Di-8-ANEPPS stained dye. The experimental data is well fit to the theoretical prediction. The SHG intensity depended on the linear polarization angle is measured for the well-characterized cases of chicken tendon and skeletal muscle, and the extracted helical pitch angles agree with previous results. Furthermore, the net collagen α-helix pitch angle within the gel mixtures was investigated by using a new pixel based polarization resolved approach by combining previous analyses. The extracted pitch angles are consistent with those of peptide models and the method has sufficient sensitivity to differentiate collagen type I from the collagen type I/ collagen type III mixtures. Furthermore, AuNRs in designated positions of the fabricated 3D polyacrylamide microstructures has been successfully achieved. The AuNRs-doped BSA microstructures can be applied in biomedical scaffolds with surface plasmonic properties. Finally, a fabricated approach with modulated raster scanning has been developed for precisely recreating a single section of mouse heart. Also, this method should be useful in the cell-matrix studies with the fabricated artificial scaffolds.
[1.1] B. R. Masters and T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express 8, 2-10 (2001).
[1.2] M. Goepper-Mayer, “Ober Elementaraktemit zwei Quantensprungen,” Annalen der Physik 9, 273-294 (1931).
[1.3] W. Denk, J. H Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[1.4] P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-dimesional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493-508 (2002).
[1.5] S. Y. Chen, S. U. Chen, H. Y. Wu, W. J. Lee, Y. H. Liao, and C. K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top Quant. 16, 478-492 (2010).
[1.6] P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83, 3224-3231 (2011).
[1.7] S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271-90 (1981).
[1.8] B. Brodsky and A. Persikov, “Molecular structure of the collagen triple helix,” Adv. Protein Chem. 70, 301-39 (2005).
[1.9] H. R. C. Screen, D. L. Bader, D. A. Lee, and J. C. Shelton, “Local Strain Measurement within Tendon,” Strain 40, 157-163 (2004).
[1.10] S.-W. Chu, S.-P. Tai, C.-K. Sun, and C.-H. Lin, “Selective imaging in second-harmonic-generation microscopy by polarization manipulation,” Appl. Phys. Lett. 91, 103903 (2007).
[1.11] S. Brasselet, “Polarization resolved nonlinear microscopy: application to structural molecular and bio-imaging,” Adv. Opt. and Photon. 3, 205-271 (2011).
[1.12] X. Y. Chen, C. Raggio, and P. J. Campagnola, “Second-harmonic generation circular dichroism studies of osteogenesis imperfecta,” Opt. Lett. 37, 3837-3839 (2012).
[1.13] X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7, 654-669 (2012).
[1.14] C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[1.15] P. Schon, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891-20901 (2008).
[1.16] I. Gusachenko, V. Tran, Y. G. Houssen, J. M. Allain, and M. C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J. 102, 2220-2229 (2012).
[1.17] K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt Lett. 15, 1680-2 (2007).
[1.18] S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Las. Photon. Rev. 2, 100-111 (2008).
[1.19] W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106-1109 (2002).
[1.20] M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374-1379 (2002).
[1.21] C. E. Olson, M. J. Previte, and J. T. Fourkas, “Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers,” Nat. Mater. 1, 225-228 (2002).
[1.22] J. Fourkas, “Multiphoton lithography, processing and fabrication of photonic structures,” Woodh. Pub. Ser. Elect., 139-161 (2012).
[1.23] C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photon. 5, 523-530 (2011).
[1.24] G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip 10, 1057-1060 (2010).
[2.1] W. Lo, S. W. Teng, H. Y. Tan, K. H. Kim, H. C. Chen, H. S. Lee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging,” Microsc. Res. Techniq. 69, 973-975 (2006).
[2.2] P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med. 6, 11 (2008).
[2.3] E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796-800 (2003).
[2.4] R. Cicchi, S. Sestini, V. De Giorgi, P. Carli, D. Massi, and F. S. Pavone, “Basal cell carcinoma imaging and characterization by multiple nonlinear microscopy techniques,” Biophys J. , Supplement: 157a-157a (2007).
[2.5] M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15, 4054-4065 (2007).
[2.6] C. P. Pfeffer, B. R. Olsen, and F. Legare, “Second harmonic generation imaging of fascia within thick tissue block,” Op. Express 15, 7296-7302 (2007).
[2.7] K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9, 299-307 (2008).
[2.8] G. P. Kwon, J. L. Schroeder, M. J. Amar, A. T. Remaley, and R. S. Balaban, “Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points,” Circulation 117, 2919-2927 (2008).
[2.9] S. V. Plotnikov, A. Kenny, S. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. Pilbeam, D. Adams, R. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13, 044018 (2008).
[2.10] V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U S A 107, 7763-7768 (2010).
[2.11] R. Cicchi, D. Kapsokalyvas, V. De Giorgi, V. Maio, A. Van Wiechen, D. Massi, T. Lotti, and F. S. Pavone, “Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy,” J. Biophoton. 3, 34-43 (2010).
[2.12] S. Plotnikov, V. Juneja, A. B. Isaacson, W. A. Mohler, and P. J. Campagnola, “Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle,” Biophys. J. 90, 328-339 (2006).
[2.13] A. M. Pena, A. Fabre, D. Debarre, J. Marchal-Somme, B. Crestani, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70, 162-170 (2007).
[2.14] W. Sun, S. Chang, D. C. Tai, N. Tan, G. Xiao, H. Tang, and H. Yu, “Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies,” J. Biomed. Opt. 13, 064010 (2008).
[2.15] M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl, and P. J. Keely, “Aligned collagen is a prognostic signature for survival in human breast carcinoma,” Am. J. Pathol. 178, 1221-1232 (2011).
[2.16] A. Ghazaryan, H. F. Tsai, G. Hayrapetyan, W. L. Chen, Y. F. Chen, M. Y. Jeong, C. S. Kim, S.-J. Chen, and C. Y. Dong, “Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy,” J. Biomed. Opt. 18, 031105 (2013).
[2.17] K. M. Reiser, C. Bratton, D. R. Yankelevich, A. Knoesen, I. Rocha-Mendoza, and J. Lotz, “Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: comparison with morphometric analysis,” J. Biomed. Opt. 12, 064019 (2007).
[2.18] S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the Myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693-703 (2006).
[2.19] A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759-12769 (2011).
[2.20] I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339-19352 (2010).
[2.21] D. Rouède, J. J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and experimental SHG angular intensity patterns from healthy and proteolysed muscles,” Biophys. J. 104, 1959-1968 (2013).
[2.22] P. J. Su, W. L. Chen, Y. F. Chen, and C. Y. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053-2062 (2011).
[2.23] S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of (2)/(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86, 3914-3922 (2004).
[2.24] F. Tiaho, G. Recher, and D. Rouede, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15, 12286-12295 (2007).
[2.25] O. Nadiarnykh and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17, 5794-5806 (2009).
[2.26] O. Sandre, L. Moreaux, and F. Brochard-Wyart, “Dynamics of transient pores in stretched vesicles,” Proc. Natl. Acad. Sci. USA 96, 10591-10596 (1999).
[2.27] A. C. Millard, L. Jin, M. D. Wei, J. P. Wuskell, A. Lewis, and L. M. Loew, “Sensitivity of second harmonic generation from styryl dyes to transmembrane potential,” Biophys. J. 86, 1169-1176 (2004).
[2.28] L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J. 80, 1568-1574 (2001).
[2.29] D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).
[2.30] X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279-290 (2002).
[2.31] J. Duboisset, D. Ait-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation,” Phys. Rev. A 85, 043829 (2012).
[2.32] O. Nadiarnykh, S. Plotnikov, W. A. Mohler, I. Kalajzic, D. Redford-Badwal, and P. J. Campagnola, “Second harmonic generation imaging microscopy studies of osteogenesis imperfecta,” J. Biomed. Opt. 12, 051805 (2007).
[2.33] Karissa Tilbury, C.-H. Lien, S.-J. Chen, and P. J. Campagnola, “Differentiation of Col I and Col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality,” Biophys. J. 106, 354-365 (2014).
[3.1] P. P. Provenzano1, K. W. Eliceiri, J. M. Campbell, D. R. Inman1, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006).
[3.2] O. Nadiarnykh, R. B. LaComb, M. A. Brewer, and P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy, BMC Cancer 10, 94 (2010).
[3.3] S. H. Barsky, C. N. Rao, G. R. Grotendorst, and L. A. Liotta, “Increased content of type V collagen in desmoplasia of human breast carcinoma,” Am. J. Pathol. 108, 276-283 (1982).
[3.4] C. Ricciardelli and R. J. Rodgers, “Extracellular matrix of ovarian tumors,” Semin. Reprod. Med. 24, 270-282 (2006).
[3.5] D. E. Birk, J. M. Fitch, J. P. Babiarz, K. J. Doane, and T. F. Linsenmayer, “Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter,” J. Cell Sci. 95, 649-657 (1990).
[3.6] G. J. Cameron, I. L. Alberts, J. H. Laing, and T. J. Wess, “Structure of type I and type III heterotypic collagen fibrils: an x-ray diffraction study,” J. Struct. Biol. 137, 15-2 (2002).
[3.7] X. Liu, H. Wu, M. Byrne, S. Krane, and R. Jaenisch, “Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development,” Proc. Natl. Acad. Sci. USA. 94, 1852-1856 (1997).
[3.8] W. Henkel and R. W. Glanville, “Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the a1 (I) and a1 (III) chains in the formation of intermolecular crosslinks,” Eur. J. Biochem. 122, 205-213 (1982).
[3.9] S. Kauppila, M. K. Bode, F. Stenbäck, L. Risteli, and J. Risteli, “Cross-linked telopeptides of type I and III collagens in malignant ovarian tumors in vivo,” Br. J. Cancer. 81, 654-661 (1999).
[3.10] C. A. Sherman-Baust, A. T. Weeraratna, L. B.A. Rangel, E. S. Pizer, K. R. Cho, D. R. Schwartz, T. Shock, and P. J. Morin, “Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells,” Cancer Cell 3, 377-386 (2003).
[3.11] V. Ajeti, O. Nadiarnykh, S. M. Ponik, P.J. Keely, K. W. Eliceiri, and P. J. Campagnola, “Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: implications for probing stromal alterations in human breast cancer,” Biomed. Opt. Express 2, 2307-2316 (2011).
[3.12] R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281, 1823-1832 (2008).
[3.13] D. J. Hulmes, “Building collagen molecules, fibrils, and suprafibrillar structures,” J. Struct. Biol. 137, 2-10 (2002).
[3.14] P. J. Campagnola, A. C. Millard, M. Terasaki, P.E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493-508 (2002).
[3.15] D. Aït-Belkacem, M. Guilbert, M. Roche, J. Duboisset, P. Ferrand, G. Sockalingum, P. Jeannesson, and S. Brasselet, “Microscopic structural study of collagen aging in isolated fibrils using polarized second harmonic generation,” J. Biomed. Opt. 17, 080506 (2012).
[3.16] P. J. Keely, A. M. Fong, M. M. Zutter, and S. A. Santoro, “Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense a2 integrin mRNA in mammary cells,” J. Cell Sci. 108, 595-607 (1995).
[3.17] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “FIJI: an open-source platform for biological-image analysis,” Nat. Methods 9, 676-682 (2012).
[3.18] C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92, 212-2222 (2007).
[3.19] A. M. Stein, D. A. Vader, L. M. Jawerth, D. A. Weitz, and L. M. Sander, “An algorithm for extracting the network geometry of three-dimensional collagen gels,” J. Microsc. 232, 463-475 (2008).
[3.20] R. Lacomb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative SHG imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J. 94, 4504-4514 (2008).
[3.21] J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325-330 (2001).
[3.22] R. W. Munn and C. N. Ironside, Nonlinear Optical Materials (Blackie Academic & Professional, 1993).
[3.23] P. Stoller, B. M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205-214 (2002).
[3.24] R. Z. Kramer, J. Bella, P. Mayville, B. Brodsky, and H. M. Berman, “Sequence dependent conformational variations of collagen triple-helical structure,” Nat. Struct. Biol. 6, 454-457 (1999).
[3.25] I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693-712 (1986).
[3.26] P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330-3342 (2002).
[3.27] S. A. Mitchell, R. A. McAloney, D. Moffatt,N. Mora-Diez, and M. Z. Zgierski, “Second-harmonic generation optical activity of a polypeptide alpha-helix at the air/water interface,” J. Chem. Phys. 122, 114707 (2005).
[3.28] I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 93, 4433-4444 (2007).
[3.29] K. Beck and B. Brodsky, “Supercoiled protein motifs: the collagen triple-helix and the a-helical coiled coil,” J. Struct. Biol. 122, 17-29 (1998).
[3.30] D. E. Birk, “Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly,” Micron. 32, 223-237 (2001).
[3.31] D. E. Birk and R. Mayne, “Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter,” Eur. J. Cell Biol. 72, 352-361 (1997).
[3.32] R. Garrone, C. Lethias, and D. Le Guellec, “Distribution of minor collagens during skin development,” Microsc. Res. Tech. 38, 407-412 (1997).
[3.33] T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta. 93, 119-125 (1979).
[4.1] C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103, 3737-3741 (1999).
[4.2] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
[4.3] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33, 1511-1513 (2000).
[4.4] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
[4.5] P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[4.6] T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312-314 (2002).
[4.7] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys. A: Mater. Sci. Process. 73, 561-566 (2001).
[4.8] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[4.9] T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12, 611-614 (2002).
[4.10] Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20, 914-919 (2008).
[4.11] A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, and H. Misawa, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
[4.12] P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438-1441 (2000).
[4.13] Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144-1148 (2009).
[4.14] N. Takeshima, Y. Narita, T. Nagata, and S. Tanaka, “Fabrication of photonic crystals in ZnS-doped glass,” Opt. Lett. 30, 537-539 (2005)
[4.15] G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783-2785 (2006).
[4.16] Z. B. Sun, X. Z. Dong, S. Nzkanishi, W. Q. Chen, X. M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys. A 86, 427-431 (2007).
[4.17] W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents and in near-infrared optical imaging,” Angew. Chem. Int. Ed. 49, 2711-2715 (2010).
[4.18] W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. 37, 4430-4432 (2008).
[4.19] W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. 32, 4853-4855 (2009)
[4.20] J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Giraultb, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 269, 935-939 (2004).
[4.21] A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3, 1906-1912 (2009).
[4.22] Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod array with good reproducibility for high-performance surface-enhanced Raman scattering,“ Langmuir 25, 4708-4714 (2009).
[4.23] L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as backscattering albedo contrast agents for optical coherent tomography,” Opt. Express 14, 6724-6738 (2006).
[4.24] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano. Lett. 7, 941-945 (2007).
[4.25] M.B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517-523 (2000).
[4.26] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[4.27] P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410-413 (2009).
[4.28] N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13, 2313-2322 (2001).
[4.29] J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coordination Chem. Rev. 249, 1870-1901 (2005).
[4.30] Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993-2995 (1993).
[4.31] L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14, 8613-8621 (2006).
[4.32] C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13,481-491 (1996).
[4.33] S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104, 6152-6163 (2000).
[4.34] O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 41, 185501 (2008).
[4.35] C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807-12817 (2010).
[4.36] M. A. Swartz, “Signaling in morphogenesis: transport cues in morphogenesis,” Curr. Opin. Biotechnol. 14, 547-550 (2003).
[4.37] L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “Adhesive and migratory effects of osteopontin are mediated via distinct cell-surface integrins - Role of alpha v beta 3 in smooth-muscle cell-migration to osteopontin in-vitro,” J. Clin. Invest. 95, 713-724 (1995).
[4.38] S. Basu, L. P. Cunningham, G. Pins, K. A. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromol. 6, 1465-1474 (2005).
[4.39] G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mat. Res. 78A, 194-204 (2006).
[4.40] R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127, 10707-10711 (2005).
[4.41] Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U S A 105, 1798-1802 (2008).
[4.42] K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission” J. Fluoresc. 17, 7-13 (2007).
[4.43] W. S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Cheng, C.-Y. Lin, Lynn L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18, 27550-27559 (2010).
[4.44] D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol. A 47, 1-29 (1989).
[5.1] M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, “Construction of a laser scanning microscope for multiphoton excited optical fabrication,” Rev. Sci. Instrum. 74, 3474-3477 (2003).
[5.2] S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A, 359-368 (2004).
[5.3] S. Basu, C. W. Wolgemuth, and P. J. Campagnola, “Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking,” Biomacromolecules 5, 2347-2357 (2004).