| 研究生: |
王鴻昇 Wang, Hung-Sheng |
|---|---|
| 論文名稱: |
藍相液晶於楔型樣品之可空間調控寬反射波段與雷射輸出之研究 Spatially tunable reflection of wide spectral range and lasing emissions based on blue phase liquid crystal in a wedge cell |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 藍相液晶 、楔形樣品 、可空間調控 、表面錨定影響力 |
| 外文關鍵詞: | blue phase liquid crystal, wedge cell, spatially tunable, surface anchoring force |
| 相關次數: | 點閱:134 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發現利用將藍相液晶灌入楔形樣品可產生具有廣波段的可空間調控反射可見光。因藍相液晶可以反射可見波長的光,而且隨著降溫此反射頻譜會有明顯的紅移現象,因此藉由楔形結構具有的厚度梯度變化產生一連續變化的藍相液晶反射頻譜。由於不同的厚度會提供不同的邊界錨定影響力,進而嚴重影響藍相液晶反射頻譜的紅移現象。此藍相液晶反射頻譜總共連續調控了超過130奈米距離,幾乎接近全白光範圍。此外,本研究更進一步研發出利用楔形結構產生藍相液晶調控雷射輸出,其雷射輸出波長在反射頻譜範圍內連續調控將近70奈米距離。值得注意的是,利用楔形結構產生的藍相液晶反射頻譜調控範圍和雷射輸出調控範圍遠遠超過利用膽固醇相液晶於楔形結構的反射頻譜和雷射輸出的調控範圍。如此可空間上大範圍調控的藍相液晶反射頻譜跟雷射輸出在光電領域上擁有很大的潛力,未來可應用於光電元件與顯示上。
This study demonstrates a spatially tunable reflection of wide spectral range based on blue phase liquid crystal (BPLC) in a wedge cell. Blue phases (BPs) show reflection of light in the visible wavelength and have obvious red-shifting phenomenon during the cooling process. Therefore, the continuously shifting reflections of BPLC wedge cell is occurred by means of the gradient thickness in wedge cell. The gradient thickness of wedge cell provides different surface anchoring force to limit the red-shifting effect of reflection of BP. Due to gradient surface anchoring force within the wedge cell, the continuously shifting reflection is even more than 130 nm nearly covering the range of blue, green, red light. Also, the spatially tunable lasing emissions based on dye-doped blue phase liquid crystal (DDBPLC) in wedge cell is demonstrated and the lasing wavelength is continuously tuned in the region of the shifting range of reflection of BP. The shifting range of lasing emissions is about 70 nm. Both the two shifting ranges (reflections and lasing emission) are extremely larger than the shifting range in CLCs wedge cell. The shifting reflection and lasing emissions of BP have a great amount of potential in applications of optoelectronic device and display.
References
1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phy. Rev. Lett. 58, 2059-2062 (1987).
2. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,”Appl. Phys. Lett. 75, 316-318 (1999).
3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Papkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, 284, 1819-1821 (1999).
4. M. Loncar, T. Yoshie, A. Scherer, P. Gonga, and Y. Qiu, “Low threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680-2682 (2002).
5. P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E 62, 1435-1437 (2000).
6. R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E 47, 2067-2072 (1993).
7. R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic band gaps in body-centered-cubic structures,” Phys. Rev. B 48, 10914-10917 (1994).
8. C. Y. Huang, J. J. Stott, and R. G. Petschek, “Routes to self-assembling stable photonic band-gap phases in emulsions of chiral nematics with isotropic fluids,” Phys. Rev. Lett. 80, 5603-5606 (1998).
9. H. Y. Liu, C. T. Wang, C. Y. Hsu, T. H. Lin, and J. H. Liu, “Optically tunable blue phase photonic band gaps,” Appl. Phys. Lett. 96, 121103 (2010).
10. H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct Bond 128, 99-117 (2008).
11. Chun-Ta Wang, Hu-Yi Liu, Hsin-Hui Cheng, and Tsung-Hsien Lin, “Bistable effect in the liquid crystal blue phase,” Appl. Phys. Lett. 96, 041106 (2010).
12. Hyunseok Choi, Hiroki Higuchi, and Hirotsugu Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98, 131905 (2011).
13. Mi-Yun Jeong, Hyunhee Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
14. Sung-Kyu Hong1, Gi-Hwan Lim1, Hirotsugu Kikuchi, “Thickness Dependence of Blue Phase TransitionBehavior of Chiral Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. 511, 248-254 (2009).
15. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
16. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, New York, 1992).
17. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York, 1995).
18. Pochi Yeh, and Claire Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, New York, 1999).
19. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).
20. F. Simmoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).
21. G. Barbero and L. R. Evangelista, An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (World Scientific, Singapore, 2000).
22. David C. Wright and David Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys., 61, 385-432 (1989).
23. P. Crooker, “The Cholesteric Blue Phase: A Progress Report,” Mol. Cryst. Liq. Cryst. 98, 31-45 (1983).
24. H. Stegemeyer, T. Blumel, K. Hiltrop, H. Onusseit, F. Porsch, “Thermodynamic, Structural and Morphological Studies on Liquid-Crystalline Blue Phases,” Liq. Cryst. 1, 3-28 (1986).
25. P. Cladis, Theory and Applications of Liquid Crystals (Berlin Heidelberg, Springer, New York, 1987).
26. P. Crooker, Chirality in Liquid Crystals (Berlin Heidelberg, Springer, New York, 2001).
27. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals (Taylor & Francis, Boca Raton, London, New York, Singapore, 2005).
28. G. W. Gray, “The mesomorphic behavior of the fatty esters of cholesterol,” J. Chem. Soc. 0, 3733-3739 (1956).
29. A. Saupe, “On molecular structure and physical properties of thermotropic liquid crystals,” Mol. Cryst. Liq. Cryst. 7, 59-74 (1969).
30. D. Coate and G. W. Gray, “Optical studies of the amorphous liquid-cholesteric liquid crystal transition: The “blue phase”,” Phys. Lett. 45, 115-116 (1973).
31. J. P. Sethna, “Frustration, curvature and defect lines in metallic glasses and the cholesteric blue phase,” Phys. Rev. B 31, 6278-6297 (1985).
32. S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the Blue Phase of Cholesteric Liquid Crystals,” Phys. Rev. Lett. 46, 1216-1219 (1981).
33. H. S. Kitzerow, “Blue Phases come of age: a review,” Proc. of SPIE 7232, 723205-1 (2009).
34. A. Yoshizawa, “Liquid Crystal Oligomers Exhibiting a Blue Phase,” Mol. Cryst. Liq. Cryst. 516, 99-106 (2010).
35. J. A. N. Zasadzinski, S. Meiboom, M. J. Sammon, and D. W. Berreman, “Freeze-Fracture Electron-Microscope Qbservations of the Blue Phase III,” Phys. Rev. Lett. 57, 364-367 (1986).
36. P. E. Cladis, P. Pieranski, and M. Joanicot, “Elasticity of Blue Phase I of Cholesteric Liquid Crystals,” Phys. Rev. Lett. 52, 542-545 (1984).
37. Charles Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 2005).
38. P. Pieranski, Classroom Experiments with Chiral Liquid Crystals (Springer-Verlag, New York, 2001).
39. P. E. Cladis, T. Garel, and P. Pieranski, “Kossel Diagrams Show Electric-Field-Induced Cubic-Tetragonal Structural Transition in Frustrated Liquid-Crystal Blue Phases,” Phys. Rev. Lett. 57, 2841-2844 (1986).
40. B. Jérome, and P. Pieranski, “Kossel Diagrams of Blue Phases,” Liq. Cryst. 5, 799-812 (1989).
41. R. J. Miller, H. F. Gleeson, and J. E. Lydon, “Many-Wave Light Scattering Features in Blue Phase Kossel Diagrams and the Phase Problem,” Phys. Rev. Lett. 77, 857-860 (1996).
42. W. Kossel, V. Loeck, and M. Voges, “Die Richtungsverteilung der in einem Kristall entstandenen charakteristischen Röntgenstrahlung,” Zeitschrift für Physik 94, 139-144 (1935).
43. P. J. Collings and M. Hird, Introduction to liquid crystals chemistry and physics (Taylor & Francis, London, Bristol, 1997).
44. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (Taylor & Francis, London, 2004).
45. G. P. Alexander and J. M. Yeomans, “Stabilizing the blue phases,” Phys. Rev. E 74, 061706 (2006).
46. M. Kahlweit, W. Ostner, “An estimation of the interfacial tension between the nematic and isotropic states of a liquid crystal,” Chem, Phys. Lett. 18, 589-591 (1973).
47. F. Oestreicher, “Über induziert cholesterische Phasen und neue elektrooptische Anwendungsmöglichkeiten,” Ph. D. thesis, Technical University Berlin, 1984.
48. J. Kerr, “A new relation between electricity and light: Dielectrified media birefringent,” Philos. Mag. 50, 337-348 (1875).
49. A. Yariv, and P. Yeh, Photonics, 6th ed. (Oxford University Press, New York, 2007).
50. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 2007).
51. D. C. O’shea, W. R. Callen and W. T. Rhodes, Introduction to Lasers and Their Applications (Addison Wesley, Boston, 1977).
52. J. T. Verdeyen, Laser Electronics (Prentice Hall, Inc., 3rd ed., 1995).
53. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.” Nat. Mater. 1,Oct. 111-113 (2002).
54. H. J. Coles and M. H. Pivnenko, “Liquid crystal ‘blue phase’ with a wide temperature range,” Nat. 436, 997-1000 (2005).
55. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64-68(2002).
56. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser Emission from a Polymer-Stabilized Liquid-Crystalline Blue Phase,” Adv. Mater. 18, 48-51 (2006).
57. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
58. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
59. J.M. Bendickson, J.P. Dowling, M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
60. H. Y. Liu, C. T. Wang, C.Y. Hsu, and T. H. Lin, “Pinning effect on the photonic bandgaps of blue-phase liquid crystal,” Appl. Opt. 50, 1606-1609 (2011).
61. J. P. Dowling, C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46, 612-622 (1992).
62. L. S. Goldberg, J. M. Schnur, “Tunable internal-feedback liquid crystal-dye laser,” US Patent 3,771,065 (1973).
63. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, M.T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24-27 (1980).
64. H. Kogelnik, C.V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43 2327-2335 (1972).
65. P. Il’chishin, A.Yu. Vakhnin, “Detecting of the structure distortion of ChLC using the generation characteristics of the distributed feedback laser based on it,” Mol. Cryst. Liq. Cryst. 265, 687-697 (1995).
66. V. I. Koppa,*, Z. Q. Zhangb, A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quan. Elec. 27, 369–416 (2003).
67. T. Seideman, “The liquid-crystalline blue phases,” Rep. Prog. Phys. 53, 659-705 (1990).
68. J. Nehring and A. Saupe, “On the elastic theory of uniaxial liquid crystals,” J. Chem. Phys. 54, 337-343 (1971).