| 研究生: |
吳竑良 Wu, Hung-Liang |
|---|---|
| 論文名稱: |
研究CD44變異型的表現在肺癌進展過程中失巢凋亡抗性的作用與機制 To study the role and mechanism of CD44 isoforms in anoikis resistance during lung cancer progression |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 失巢凋亡 、變異型 、CD44 、ESRP1 |
| 外文關鍵詞: | CD44, isoforms, Anoikis, ESRP1 |
| 相關次數: | 點閱:49 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是全球最常見的惡性腫瘤之一,治療過程中失巢抗性是治療效果不佳的一個重要因素。因此,深入了解失巢抗性的機制,尋找新的治療標靶,對提高肺癌治療效果具有重要意義。首先,我們在TCGA與CPTAC的資料庫分析後發現CD44與ESRP1在癌症發展中占有重要角色。我們挑選了三種肺癌細胞H1299、A549與PC9發現其在懸浮培養時的生存型態差異與細胞週期,前兩者的細胞凋亡SubG1會顯著上升。發現H1299與A549的懸浮型細胞Malat1 mRNA表現量相比貼附型細胞增加,而PC9則相反。ESRP1則是PC9的懸浮型細胞表現量相比增加,而H1299及A549則相反。此外,我們發現PC9在生長時同時具有貼附與懸浮型細胞,在傷口癒合能力實驗中發現讓其快速癒合的為懸浮型細胞,且其細胞可以在多代數的培養下持續加速生長,且在細胞遷移能力也比貼附型態的細胞能力更好。在失巢凋亡的實驗中發現H1299與A549在24小時的培養後會死亡,而PC9會上升,進一步在CD44的蛋白表現中發現,兩者的CD44整體表現量下降,而PC9的則上升。此外發現CD44v6-10與v8-10的兩個變異型存在於PC9失巢凋亡的環境下。CD44變異型可能在這些過程中扮演著不同的角色,特別是與失巢抗性相關的機制。研究CD44變異型在肺癌中的表現和功能,有助於深入瞭解這種變異對失巢抗性的調控機制。
Lung cancer is one of the most common malignant tumors globally, and resistance to anoikis during the treatment process is a significant factor contributing to poor therapeutic outcomes. Therefore, gaining a deep understanding of the mechanisms underlying anoikis resistance and identifying new therapeutic targets holds crucial significance for enhancing the efficacy of lung cancer treatment. In our study, TCGA and CPTAC analyses identified CD44 and ESRP1 pivotal roles in cancer development. In H1299, A549, and PC9 lung cancer cell lines, suspended culture showed distinct survival and cell cycle differences. Notably, SubG1 apoptotic cells increased in H1299 and A549. Malat1 mRNA in suspended H1299 and A549 cells was higher than adherent cells, while the opposite trend occurred in PC9. ESRP1 expression increased in suspended PC9 cells but decreased in H1299 and A549. Furthermore, PC9 exhibited simultaneous adherent and suspended cell type, the suspended type accelerated wound closure, and superior migration ability. Anoikis resistance experiments revealed H1299 and A549 cell death after 24 hours, while PC9 increased survival. CD44 protein analysis indicated decreased expression in H1299 and A549, contrasting with an increase in PC9. Additionally, we identified two CD44 variant isoforms, CD44v6-10 and v8-10, in PC9's anoikis-resistant environment. The existence of CD44 variants suggests their potential involvement in different roles, particularly in mechanisms associated with anoikis resistance. Investigating the expression and function of CD44 variants in lung cancer contributes to a deeper understanding of how these variations regulate anoikis resistance mechanisms.
Azevedo, R., Gaiteiro, C., Peixoto, A., Relvas-Santos, M., Lima, L., Santos, L.L., and Ferreira, J.A. CD44 glycoprotein in cancer: a molecular conundrum hampering clinical applications. Clin Proteomics 15, 22, 2018.
Bánky, B., Rásó-Barnett, L., Barbai, T., Tímár, J., Becságh, P., and Rásó, E. Characteristics of CD44 alternative splice pattern in the course of human colorectal adenocarcinoma progression. Molecular Cancer 11, 83, 2012.
Bialik, S., and Kimchi, A. The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75, 189-210, 2006.
Blandin Knight, S., Crosbie, P.A., Balata, H., Chudziak, J., Hussell, T., and Dive, C. Progress and prospects of early detection in lung cancer. Open Biology 7, 2017.
Bonnal, S.C., López-Oreja, I., and Valcárcel, J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nature Reviews Clinical Oncology 17, 457-474, 2020.
Borowicz, S., Van Scoyk, M., Avasarala, S., Karuppusamy Rathinam, M.K., Tauler, J., Bikkavilli, R.K., and Winn, R.A. The soft agar colony formation assay. J Vis Exp, e51998, 2014.
Chen, S.F., Chang, Y.C., Nieh, S., Liu, C.L., Yang, C.Y., and Lin, Y.S. Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One 7, e31864, 2012.
Chen, Y.C., Ingram, P.N., Fouladdel, S., McDermott, S.P., Azizi, E., Wicha, M.S., and Yoon, E. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis. Scientific Reports 6, 27301, 2016.
Cheng, C., and Sharp, P.A. Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Molecular and Cellular Biology 26, 362-370, 2006.
Fidler, I.J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Reviews Cancer 3, 453-458, 2003.
Fotheringham, J.A., and Raab-Traub, N. Epstein-Barr virus latent membrane protein 2 effects on epithelial acinus development reveal distinct requirements for the PY and YEEA motifs. Journal of Virology 87, 13803-13815, 2013.
Frisch, S.M., and Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. Journal of Cell Biology 124, 619-626, 1994.
Gordon, M.A., Babbs, B., Cochrane, D.R., Bitler, B.G., and Richer, J.K. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol Carcinog 58, 196-205, 2019.
Hung, C.Y., Wang, Y.C., Chuang, J.Y., Young, M.J., Liaw, H., Chang, W.C., and Hung, J.J. Nm23-H1-stabilized hnRNPA2/B1 promotes internal ribosomal entry site (IRES)-mediated translation of Sp1 in the lung cancer progression. Scientific Reports 7, 9166, 2017.
Ishimoto, T., Oshima, H., Oshima, M., Kai, K., Torii, R., Masuko, T., Baba, H., Saya, H., and Nagano, O. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Science 101, 673-678, 2010.
Iwakiri, D., Minamitani, T., and Samanta, M. Epstein-Barr virus latent membrane protein 2A contributes to anoikis resistance through ERK activation. J Virol 87, 8227-8234, 2013.
Iyoda, A., Makino, T., Koezuka, S., Otsuka, H., and Hata, Y. Treatment options for patients with large cell neuroendocrine carcinoma of the lung. General Thoracic and Cardiovascular Surgery 62, 351-356, 2014.
James, M.A., Vikis, H.G., Tate, E., Rymaszewski, A.L., and You, M. CRR9/CLPTM1L regulates cell survival signaling and is required for Ras transformation and lung tumorigenesis. Cancer Research 74, 1116-1127, 2014.
Jolly, M.K., Preca, B.T., Tripathi, S.C., Jia, D., George, J.T., Hanash, S.M., Brabletz, T., Stemmler, M.P., Maurer, J., and Levine, H. Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioengineering 2, 031908, 2018.
Jonkman, J.E., Cathcart, J.A., Xu, F., Bartolini, M.E., Amon, J.E., Stevens, K.M., and Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell Adhesion & Migration 8, 440-451, 2014.
Kockx, M.M., and Herman, A.G. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovascular Research 45, 736-746, 2000.
Kwon, T., Youn, H., Son, B., Kim, D., Seong, K.M., Park, S., Kim, W., and Youn, B. DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer. Oncotarget 7, 7193-7206, 2016.
Larsen, J.E., Nathan, V., Osborne, J.K., Farrow, R.K., Deb, D., Sullivan, J.P., Dospoy, P.D., Augustyn, A., Hight, S.K., Sato, M., Girard, L., Behrens, C., Wistuba, II, Gazdar, A.F., Hayward, N.K., and Minna, J.D. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126, 3219-3235, 2016.
Leestemaker, Y., and Ovaa, H. Tools to investigate the ubiquitin proteasome system. Drug Discov Today Technol 26, 25-31, 2017.
Ma, Z., Liu, Z., Wu, R.F., and Terada, L.S. p66(Shc) restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 29, 5559-5567, 2010.
Miłoszewska, J., Przybyszewska, M., Gos, M., Swoboda, P., and Trembacz, H. TrkB expression level correlates with metastatic properties of L1 mouse sarcoma cells cultured in non-adhesive conditions. Cell Proliferation 46, 146-152, 2013.
Nam, K., Oh, S., and Shin, I. Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway. Biochemical Journal 473, 3013-3030, 2016.
Oser, M.G., Niederst, M.J., Sequist, L.V., and Engelman, J.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. The Lancet Oncology 16, e165-172, 2015.
Paoli, P., Giannoni, E., and Chiarugi, P. Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta 1833, 3481-3498, 2013.
Pascoe, H.M., Knipe, H.C., Pascoe, D., and Heinze, S.B. The many faces of lung adenocarcinoma: A pictorial essay. Journal of Medical Imaging and Radiation Oncology 62, 654-661, 2018.
Pastrana, E., Silva-Vargas, V., and Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486-498, 2011.
Petit, V., Massonnet, G., Maciorowski, Z., Touhami, J., Thuleau, A., Némati, F., Laval, J., Château-Joubert, S., Servely, J.L., Vallerand, D., Fontaine, J.J., Taylor, N., Battini, J.L., Sitbon, M., and Decaudin, D. Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Invest 93, 611-621, 2013.
Popper, H.H. Progression and metastasis of lung cancer. Cancer and Metastasis Reviews 35, 75-91, 2016.
Preca, B.T., Bajdak, K., Mock, K., Sundararajan, V., Pfannstiel, J., Maurer, J., Wellner, U., Hopt, U.T., Brummer, T., Brabletz, S., Brabletz, T., and Stemmler, M.P. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. International Journal of Cancer 137, 2566-2577, 2015.
Prochazka, L., Tesarik, R., and Turanek, J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 26, 2234-2239, 2014.
Rafei, H., El-Bahesh, E., Finianos, A., Nassereddine, S., and Tabbara, I. Immune-based Therapies for Non-small Cell Lung Cancer. Anticancer Research 37, 377-387, 2017.
Reginato, M.J., Mills, K.R., Paulus, J.K., Lynch, D.K., Sgroi, D.C., Debnath, J., Muthuswamy, S.K., and Brugge, J.S. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nature Cell Biology 5, 733-740, 2003.
Reinke, L.M., Xu, Y., and Cheng, C. Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem 287, 36435-36442, 2012.
Roy Burman, D., Das, S., Das, C., and Bhattacharya, R. Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Molecular Biology Reports 48, 897-914, 2021.
Sargiacomo, M., Scherer, P.E., Tang, Z., Kübler, E., Song, K.S., Sanders, M.C., and Lisanti, M.P. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proceedings of the National Academy of Sciences 92, 9407-9411, 1995.
Screaton, G.R., Bell, M.V., Bell, J.I., and Jackson, D.G. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. Journal of Biological Chemistry 268, 12235-12238, 1993.
Screaton, G.R., Bell, M.V., Jackson, D.G., Cornelis, F.B., Gerth, U., and Bell, J.I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America 89, 12160-12164, 1992.
Shapiro, I.M., Cheng, A.W., Flytzanis, N.C., Balsamo, M., Condeelis, J.S., Oktay, M.H., Burge, C.B., and Gertler, F.B. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLOS Genetics 7, e1002218, 2011.
Sneath, R.J., and Mangham, D.C. The normal structure and function of CD44 and its role in neoplasia. Journal of Molecular Pathology 51, 191-200, 1998.
Stamenkovic, I., Aruffo, A., Amiot, M., and Seed, B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. The EMBO Journal 10, 343-348, 1991.
Tian, H., Lian, R., Li, Y., Liu, C., Liang, S., Li, W., Tao, T., Wu, X., Ye, Y., Yang, X., Han, J., Chen, X., Li, J., He, Y., Li, M., Wu, J., and Cai, J. AKT-induced lncRNA VAL promotes EMT-independent metastasis through diminishing Trim16-dependent Vimentin degradation. Nature Communications 11, 5127, 2020.
Vermeulen, K., Van Bockstaele, D.R., and Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferation 36, 131-149, 2003.
Wang, J., Luo, Z., Lin, L., Sui, X., Yu, L., Xu, C., Zhang, R., Zhao, Z., Zhu, Q., An, B., Wang, Q., Chen, B., Leung, E.L., and Wu, Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 14, 2022.
Wang, S.A., Wang, Y.C., Chuang, Y.P., Huang, Y.H., Su, W.C., Chang, W.C., and Hung, J.J. EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene 36, 2930-2945, 2017.
Wang, Y.-C., Wu, Y.-S., Hung, C.-Y., Wang, S.-A., Young, M.-J., Hsu, T.-I., and Hung, J.-J. USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nature Communications 9, 3996, 2018.
Wang, Y.C., Wang, S.A., Chen, P.H., Hsu, T.I., Yang, W.B., Chuang, Y.P., Su, W.C., Liaw, H.J., Chang, W.C., and Hung, J.J. Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene 35, 3669-3680, 2016.
Warzecha, C.C., Jiang, P., Amirikian, K., Dittmar, K.A., Lu, H., Shen, S., Guo, W., Xing, Y., and Carstens, R.P. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. The EMBO Journal 29, 3286-3300, 2010.
Warzecha, C.C., Sato, T.K., Nabet, B., Hogenesch, J.B., and Carstens, R.P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Molecular Cell 33, 591-601, 2009.
Wu, D., Wang, Z., Lin, M., Shang, Y., Wang, F., Zhou, J., Wang, F., Zhang, X., Luo, X., and Huang, W. In Vitro and In Vivo Antitumor Activity of Cucurbitacin C, a Novel Natural Product From Cucumber. Frontiers in Pharmacology 10, 1287, 2019.
Yae, T., Tsuchihashi, K., Ishimoto, T., Motohara, T., Yoshikawa, M., Yoshida, G.J., Wada, T., Masuko, T., Mogushi, K., Tanaka, H., Osawa, T., Kanki, Y., Minami, T., Aburatani, H., Ohmura, M., Kubo, A., Suematsu, M., Takahashi, K., Saya, H., and Nagano, O. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nature Communications 3, 883, 2012.
Yanagisawa, M., Huveldt, D., Kreinest, P., Lohse, C.M., Cheville, J.C., Parker, A.S., Copland, J.A., and Anastasiadis, P.Z. A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. Journal of Biological Chemistry 283, 18344-18354, 2008.
Yang, W.B., Chen, P.H., Hsu, T.s., Fu, T.F., Su, W.C., Liaw, H., Chang, W.C., and Hung, J.J. Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget 5, 740-753, 2014.
Zhang, X.D., and Liu, D.R. [Correlation between the new lung adenocarcinoma classification and epidermal growth factor receptor mutation]. Beijing Da Xue Xue Bao Yi Xue Ban 50, 640-644, 2018.
Zhao, K., Wang, Z., Hackert, T., Pitzer, C., and Zöller, M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res 37, 312, 2018.
Zhou, J., Du, Y., Lu, Y., Luan, B., Xu, C., Yu, Y., and Zhao, H. CD44 Expression Predicts Prognosis of Ovarian Cancer Patients Through Promoting Epithelial-Mesenchymal Transition (EMT) by Regulating Snail, ZEB1, and Caveolin-1. Front Oncol 9, 802, 2019.