| 研究生: |
吳岱勳 Wu, Tai-Hsun |
|---|---|
| 論文名稱: |
設計零至無窮大變勁度機構於半主動式振動系統 Design of a Zero-to-infinite Variable Stiffness Mechanism for Semi-active Vibration Systems |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh 邱顯堂 Chiou, Shen-Tarng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 吸振器 、半主動式振動抑制 、變勁度 、零勁度 、無窮大勁度 |
| 外文關鍵詞: | Vibration absorber, Semi-active vibration control, Variable-stiffness mechanism, Zero stiffness, Infinite stiffness |
| 相關次數: | 點閱:201 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於振動會造成機器在運作時定位精度降低、零件磨耗甚至使得機器無法正常運作或損壞,因此在工程中如何抑制各種不同頻率的振動影響變成為一項重要的課題,其中可依使用的方式而分成被動式振動抑制及主動式振動抑制,由於兩種類型各有其優劣之處,因此結合兩者之長而發展出半主動式的振動抑制。半主動式振動抑制主要為透過變阻尼或變勁度來使系統達到振動抑制的效果,其中又以機械式變勁度此類型的表現最為突出,故於本論文中藉由機構的設計提出了旋轉法變勁度,並將其應用於振動系統中。
旋轉法變勁度的原理是將兩個相同的平面彈簧採左右對稱的方式裝配於上下兩剛體之間,下端點以旋轉接頭接於水平輸出桿上,利用垂直滑槽的垂直位移來調整平面彈簧的初始夾角,使得平面彈簧的上端點會以下端點為圓心旋轉,並搭配止動元件與平面彈簧的形狀,使得旋轉法變勁度機構同時具有撓性及剛性兩種特性。旋轉法變勁度機構處於撓性狀態時,變勁度範圍可達25.15 N/mm,同時當水平輸出桿位於初始位置時,調整勁度不須施加額外能量,且能以直線位移來調整平面彈簧旋轉角度,使勁度調整能更加線性。在透過探討平面彈簧與其他零件的給定參數對旋轉法變勁度機構特性之影響後,可設計出符合需求之變勁度機構,並將其應用於振動抑制,經由實驗可驗證當旋轉法變勁度機構作為吸振子系統時,能有效抑制輸入頻率為8至17 Hz之間且振幅為1 mm的振動。
This paper presents the design and experiment of a variable stiffness mechanism (VSM) for semi-active vibration systems. Compared with vibration isolators or absorbers with constant stiffness elements, the use of a variable stiffness element can adapt to the variation in disturbance frequency or load. The idea of the proposed VSM is to adjust the symmetric rotation of two parallel connected springs. The output force-to-displacement curve can exhibit zero to very large stiffness depending on the rotation amount of the springs. Infinite stiffness is further achieved by using mechanical stoppers to constrain the displacements of the springs. To further reduce the VSM size and complexity, specifically designed planar springs are proposed to replace commercially available coil springs. Force and stiffness analyses are presented to design a VSM with the largest stiffness variation. The effects of various parameters on the stiffness variation are discussed. Finally, a prototype and its associated experiments are presented to demonstrate the vibration absorption performance against various disturbance frequencies.
[1]
C.-C. Lan, S.-A. Yang, and Y.-S. Wu, 2014, “Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads,” Journal of Sound and Vibration, 333(20), pp. 4843-4858.
[2]
Y. Araki, T. Asai, K. Kimura, K. Maezawa, and T. Masui, 2013, “Nonlinear vibration isolator with adjustable restoring force,” Journal of Sound and Vibration, 332(23), pp. 6063-6077.
[3]
R. A. Ibrahim, 2008, “Recent advances in nonlinear passive vibration isolators,” Journal of Sound and Vibration, 314(3), pp. 371-452.
[4]
Z. Gan, A. J. Hillis, and J. Darling, 2015, “Adaptive control of an active seat for occupant vibration reduction,” Journal of Sound and Vibration, 349, pp. 39-55.
[5]
Y. Liu, H. Matsuhisa, and H. Utsuno, 2008, “Semi-active vibration isolation system with variable stiffness and damping control,” Journal of Sound and Vibration, 313(1), pp. 16-28.
[6]
N. Caterino, 2015, “Semi-active control of a wind turbine via magnetorheological dampers,” Journal of Sound and Vibration, pp. 345, 1-17.
[7]
N. Jalili, 2002, “A comparative study and analysis of semi-active vibration-control systems,” ASME Journal of Vibration and Acoustics, 124(4), pp. 593-605.
[8]
M. F. Winthrop, W. P. Baker, and R. G. Cobb, 2005, “A variable stiffness device selection and design tool for lightly damped structures,” Journal of Sound and Vibration, 287(4), pp. 667-682.
[9]
H. Du, W. Li, and N. Zhang, 2011, “Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator,” Smart Materials and Structures, 20(10), 105003.
[10]
M. A. Franchek, M. W. Ryan, and R. J. Bernhard, 1996, “Adaptive passive vibration control,” Journal of Sound and Vibration, 189(5), pp. 565-585.
[11]
I. Youn and A. Hać, 1995, “Semi-active suspensions with adaptive capability,” Journal of Sound and Vibration, 180(3), pp. 475-492.
[12]
P. L. Walsh and J. S. Lamancusa, 1992, “A variable stiffness vibration absorber for minimization of transient vibrations,” Journal of Sound and Vibration, 158(2), pp. 195-211.
[13]
J. Choi, S. Hong, W. Lee, S. Kang, and M. Kim, 2011, “A robot joint with variable stiffness using leaf springs,” IEEE Transactions on Robotics, 27(2), pp. 229-238.
[14]
A. González Rodríguez, J. M. Chacón, A. Donoso, and A. G. González Rodríguez, 2011, “Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation,” Mechanism and Machine Theory, 46(12), pp. 1970-1979.
[15]
S. Lee, 2005, “Development of a new variable remote center compliance (VRCC) with modified elastomer shear pad (ESP) for robot assembly,” IEEE Transactions on Automation Science and Engineering, 2(2), pp. 193-197.
[16]
T. M. Huh, Y. J. Park, and K. J. Cho, 2012, “Design and analysis of a stiffness adjustable structure using an endoskeleton,” International Journal of Precision Engineering and Manufacturing, 13(7), pp. 1255-1258.
[17]
R.-J. Wang and H.-P. Huang, 2012, “Mechanically stiffness-adjustable actuator using a leaf spring for safe physical human-robot interaction,” Mechanika, 18(1), pp. 77-83.
[18]
J.-J. Park and J.-B Song, 2010, “A nonlinear stiffness safe joint mechanism design for human robot interaction,” Journal of Mechanical Design, 132(6), 061005.
[19]
B.-S. Kim and J.-B. Song, 2012, “Design and control of a variable stiffness actuator based on adjustable moment arm,” IEEE Transactions on Robotics, 28(5), pp. 1145-1151.
[20]
R. Ghorbani and Q. Wu, 2009, “Adjustable stiffness artificial tendons: Conceptual design and energetics study in bipedal walking robots,” Mechanism and Machine Theory, 44(1), pp. 140-161.
[21]
B.-S. Kim, J.-B. Song, and J.-J. Park, 2010, “A serial-type dual actuator unit with planetary gear train: basic design and applications,” IEEE/ASME Transactions on Mechatronics, 15(1), pp. 108-116.
[22]
H.-S. Kim, J.-J. Park, J.-B. Song, and J.-H. Kyung, 2010, “Design of safety mechanism for an industrial manipulator based on passive compliance,” Journal of Mechanical Science and Technology, 24(11), pp. 2307-2313.
[23]
D. Hyun, H. S. Yang, J. Park, and Y. Shim, 2010, “Variable stiffness mechanism for human-friendly robots,” Mechanism and Machine Theory, 45(6), pp. 880-897.
[24]
S. Kajikawa and K. Abe, 2012, “Robot finger module with multidirectional adjustable joint stiffness,” IEEE/ASME Transactions on Mechatronics, 17(1), pp. 128-135.
[25]
S. A. Migliore, E. A. Brown, and S. P. DeWeerth, 2007, “Novel nonlinear elastic actuators for passively controlling robotic joint compliance,” Journal of Mechanical Design, 129(4), pp. 406-412.
[26]
C. E. English and D. Russell, 1999, “Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs,” Mechanism and Machine Theory, 34(1), pp. 7-25.
[27]
S.-L. Chang, J.-J. Lee, and H.-C. Yen, 2005, “Kinematic and compliance analysis for tendon-driven robotic mechanisms with flexible tendons,” Mechanism and Machine Theory, 40(6), pp. 728-739.
[28]
S. H. Huh and Z. Bien, 2007, “Robust sliding mode control of a robot manipulator based on variable structure-model reference adaptive control approach,” IET Control Theory & Applications, 1(5), pp. 1355-1363.
[29]
K.-H. Nam, B.-S. Kim, and J.-B. Song, 2010, “Compliant actuation of parallel-type variable stiffness actuator based on antagonistic actuation,” Journal of Mechanical Science and Technology, 24(11), pp. 2315-2321.
[30]
D. Mitrovic, S. Klanke, and S. Vijayakumar, 2011, “Learning impedance control of antagonistic systems based on stochastic optimization principles,” The International Journal of Robotics Research, 30(5), pp. 556-573.
[31]
A. Jafari, N. G. Tsagarakis, and D. G. Caldwell, 2011, “A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS),” IEEE/ASME Transactions on Mechatronics, 18(1), pp. 355-365.
[32]
M. Kilic, Y. Yazicioglu, and D. F. Kurtulus, 2012, “Synthesis of a torsional spring mechanism with mechanically adjustable stiffness using wrapping cams,” Mechanism and Machine Theory, 57, pp. 27-39.
[33]
Y.-S. Wu and C.-C. Lan, 2014, “Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams,” Journal of Mechanical Design, 136(12), 122302.
[34]
C.-C. Lan and K.-M. Lee, 2006, “Generalized shooting method for analyzing compliant mechanisms with curved members,” ASME Journal of Mechanical Design, 128(4), pp. 765-775.
[35]
C.-C. Lan and Y.-J. Cheng, 2008, “Distributed shape optimization of compliant mechanisms using intrinsic functions,” ASME Journal of Mechanical Design, 130(7), 072304.
[36]
G. A. Pratt and M. M. Williamson, 1995, “Series elastic actuators,” IEEE/RSJ International Conference on Human Robot Interaction and Cooperative Robots, Pittsburgh, 1, pp. 399-406.
[37]
J. Pratt, B. Krupp, and C. Morse, 2002, “Series elastic actuators for high fidelity force control,” International Journal of Industrial Robot, 29, pp. 234-241.
[38]
A. H. Nayfeh and D. T. Mook, 2008, “Nonlinear oscillations,” John Wiley & Sons.
[39]
M. N. Hamdan and T. D. Burton, 1993, “On the steady state response and stability of non-linear oscillators using harmonic balance,” Journal of Sound and Vibration, 166(2), pp. 255-266.
[40]
H. Hu and J. H. Tang, 2006, “Solution of a Duffing-harmonic oscillator by the method of harmonic balance,” Journal of Sound and Vibration, 294(3), pp. 637-639.