簡易檢索 / 詳目顯示

研究生: 顏凡鈞
Yen, Fan-Chun
論文名稱: 不同成型方式對CIGS坯體燒結緻密化、結晶相與微結構之影響
Effects of forming methods on the densification,crystalline phase and microstructure of CIGS ceramics
指導教授: 向性一
Hsiang, Hsing-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 銅銦鎵硒燒結
外文關鍵詞: CIGS, Sintering
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先合成In/Ga比為7:3之CuIn0.7Ga0.3Se2起始粉末,再以不同生坯成型方式成型,探討不同成型方式對CIGS燒結緻密化及微結構之影響。
    以熱分解法合成之CIGS粉體為單一相的CIGS黃銅礦結構,經由Scherrer equation計算以及BET比表面積儀的量測結果可以得知所合成出來的粉體屬奈米等級(nanoscale),但具有相當程度之凝聚。
    以乾壓成型法製得CIGS之生坯體於空氣氣氛下進行燒結,由於存在著較高的氧分壓,造成CuSe與Se之偏析;相反的,於真空封管中進行硒氣氛燒結可獲得單一相且維持正常劑量比的CuIn0.7Ga0.3Se2黃銅礦結構之燒結體,但坯體內部仍存在著許多大型凝聚體,伴隨著許多凝聚體間的孔洞(Inter-agglomerate pore)導致坯體無法有效緻密化;此外,於實驗中也發現當做包覆劑及配位溶劑之油胺若於燒結前未完全排除,將阻礙坯體之緻密化產生異常晶粒成長的現象。
    以離心成型法製得的生坯,由於大型凝聚體已經透過離心力排除,坯體內部之孔洞主要都是Domain間的小型配位數孔洞(Intra-agglomerate pore),較利於固相燒結的進行。離心成型坯體經550℃持溫三小時的真空硒化燒結後,坯體已緻密化且晶粒已經成長至數個微米,坯體之相對密度值高達92.3%。
    熱壓成型方面,短時間十分鐘的熱壓即可以使坯體之相對密度升高到75%以上,原因為熱壓過程能夠有效的透過外加壓力與持溫受熱過程促進顆粒間的滑移,而能有效的打破凝聚體。而後將經短時間熱壓後的坯體進行真空封管硒化燒結1-3小時後可以使坯體之相對密度提升至91%以上。由UV/VIS光譜量測可以得到經熱壓燒結後之坯體能隙值落在1.15eV。接近CIGS理論最佳轉換效率區間之能隙範圍中。

    In this study, CIGS (CuIn0.7Ga0.3Se2) powders synthesized using thermal decomposition method were used as the raw materials to investigate the effects of different forming methods on the densification, crystalline phase and microstructure of CIGS sintered samples.
    The CIGS powders synthesized using thermal decomposition method exhibited nano-sized based on the Scherrer’s equation calculation and BET measurements and considerable degree of agglomeration.
    The segregations of CuSe and Se were observed in the dry-pressed samples after sintering under air atmosphere due to the volatility of In and Ga. On the contrary, CuIn0.7Ga0.3Se2 chalcopyrite single phase can be obtained, but there were still many inter-agglomerate pores existed in the samples sintered under Se2 atmosphere with encapsulated glass tube. Moreover, it was observed that the oleylamine (acted as the capping agent and coordinated solvent in the thermal decomposition method) existed in the green body due to without completely burning-out before sintering may hinder the densification and inhibit the grain growth.
    For the green body prepared by centrifugal forming method, the large agglomerates were removed by centrifugal force, which reduced the amounts of inter-agglomerate pores and hence promoted the densification. The relative density of above 92.3% and grain size of several microns can be obtained for the centrifugal formed sample after sintering at 550oC for 3 h under Se2 atmosphere.
    In the case of hot-pressed samples, the relative density of more than 75% can be obtained after hot-pressed sintering for 10 minutes. It may be due to the hot-pressed sintering can effectively break the agglomerates via promoting the slip between the particles by applied pressure. Then, the relative density of CIGS after hot-pressed sintering can be promoted to 91% by sequentially sintering at 550oC for 3 h under Se2 atmosphere. UV/VIS spectroscopy measurements show that the energy gap of the sample after hot pressed and Se2 atmosphere sintering is about 1.15eV, which is close to the theoretical optimum bandgap range of CIGS conversion efficiency.

    摘要 I 表目錄 VII 圖目錄 VIII 附錄 XI 第一章 序論 1 1-1前言: 1 1-2 研究目的: 2 第二章 前人研究與理論基礎 3 2-1 硒化銅銦鎵(CuInxGa1-xSe2 , CIGS) 3 2-1-1 硒化銅銦鎵(CuInxGa1-xSe2 , CIGS) 之簡介 3 2-1-2 硒化銅銦鎵太陽能電池基本結構與晶體結構 3 2-1-4 硒化銅銦鎵與硒化銅銦之合成方式 5 2-2粉末之燒結 9 2-2-1 粉體之外型(Morphology) 9 2-2-2 粉體粒徑分佈(Particle size distribution) 9 2-2-3 凝聚體與孔隙 10 2-3 CIGS之成型與燒結行為 15 2-4 熱壓燒結 18 第三章 實驗方法與步驟 21 3-1實驗藥品與儀器 21 3-2實驗流程 22 3-2-1 CIGS之製備流程 22 3-2-2 CIGS常壓成型燒結製程 24 3-2-2-1 CIGS乾壓成型燒結製程 24 3-2-2-2 CIGS離心成型燒結製程 27 3-2-3 CIGS熱壓燒結製程 29 3-3 儀器與分析量測 33 3-3-1結晶相鑑定 33 3-3-2成份/組成分析 33 X射線繞射及螢光分析(X-ray diffraction and fluorescence analysis) 33 3-3-3 微結構分析 34 3- 3-4 熱收縮分析(DIL) 34 3- 3-5 比表面積量測(BET) 34 3-3-6 傅利葉轉換紅外光分析光譜 34 3-3-7 紫外光/可見光光譜分析儀 35 3-3-8 燒結體密度量測 35 第四章 結果與討論 36 4-1 起始粉末性質分析與不同環境下之初步燒結測試 36 4-2 乾壓成型燒結 39 4-2-1 無經預熱處粉體之乾壓燒結 39 4-2-2 經預熱處粉體之乾壓燒結 43 4-2-3 預熱處理坯體對微區成份與緻密性的探討 47 4-3 坯體離心成型燒結 49 4-3-1 孔洞類型與初步燒結處理 49 4-3-2 離心成型坯體燒結 52 4-4 坯體之熱壓成型 58 第五章 結論 69 參考文獻 71 附錄 74

    1. B.J. Stanbery, S. Kincal, S. Kim, C.-H. Chang, S.P. Ahrenkiel, G. Lippold, H. Neumann, T.J. Anderson and O.D. Crisalle, "Epitaxial growth and characterization of CuInSe2 Crystallographic polytypes ". Appl. Phys., 91(6), 3598-3604 (2002)
    2. S. Siebentritt, "Wide Gap Chalcopyrites: Material Properties and Solar Cells" Thin Solid Films 403-404 (2002)
    3. T. Wada, H. Kinoshita, S. Kawata ,"Preparation of chalcopyrite-type CuInSe2 by non-heating process," Thin Solid Films 431 –432 (2003) 11–15
    4. Zhang Ning, Zhuang Da-Ming, Zhang Gong," An investigation on preparation of CIGS targets by sintering process," Materials Science and Engineering B 166 (2010)34–40
    5. B. Li, Y. Xie, J.X. Huang, amd Y.T. Qian, "Sythesis by Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles," Adv. Mater, 11, 1456 (1999).
    6. K.H. Kim, Y.G. Chun, B.O. Park, and K.H. Yoon, "Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route," Mater. Sci. Forum, 449-452, 273-276 (2004).
    7. Qijie Guo, Suk Jun Kim, Mahaprasad Kar, William Shafarman,Robert Birkmire, Eric A. Stach,Rakesh Agrawal, Hugh W. Hillhouse,"Development of a CuInSe2 Nanocrystal Ink for Low Cost Solar Cells,"Nano Letters Vol.8,No.9(2008)
    8. Matthew G Panthani, Vahid Akhavan, Brian Goodfellow, Johanna P Schmidtke, Lawrence Dunn, Ananth Dodabalapur, Paul F Barbara and Brian A Korgel," Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. " J Am Chem Soc 130(49):16770-7 (2008)
    9. K. Nose, Y. Soma, Takahisa and S. Otsuka-Yao-Matsuo, "Synthesis of Ternary CuInS2 Nanocrystals;Phase Determination by Complex Ligand Species," Chem. Mater, 21, 2607-2613 (2009).
    10. Agn`es Dupont , A. Largeteau , Claude Parent , Bruno Le Garrec , Jean Marc Heintz "Influence of the yttria powder morphology on its densification ability "Journal of the European Ceramic Society 25 (2005) 2097–2103
    11. J. Ma, L.C. Lim,"Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts",Journal of the European Ceramic Society 22 (2002) 2197–2208
    12. H.M. Lee, C.Y. Huang, C.J. Wang, " Forming and sintering behaviors of α-Al2O3 powders with different particle size distribution and agglomeration",journal of materials processing technology 209(2009)714-722
    13. H.N. Ch’ng , Jingzhe Pan, " Sintering of particles of different sizes"Acta Materialia 55 (2007) 813–824
    14. J. P. Smith and G. L. Messing, “Sintering of Bimodally Distributed Alumina
    Powders,” J. Am. Ceram. Soc., 67 [4], 238-242, (1984).
    15. M. N. Rahaman, Ceramic Processing and Sintering, New York (1995).
    16. J. W. Halloran, “Agglormerates and Agglomeration in Ceramic Processing,’’ in Ultrastructure Processing of Ceramics, Glass and Composites, Eds. L. L. Hench
    and D. R. Ulrich, Wiley, New York (1984).
    17. M.J.Mayo,D.C.Hague,D.-J. Chen, “Processing nanocrystalline ceramics for applications in superplasticity”,Materials Science and Engineering A166(1993)145-159
    18. T. G. M.Van de Ven and R. J. Hunter, “Energy Dissipation in Sheared Coagulated sols,” Rheologic Acta, 16 [5], 534 (1977).
    19. W. D. Kingery and B. Francois, “Sintering of Crystalline Oxides, I. Interactions
    between Grain Boundaries and Pores,” pp. 471 in Sintering and Related
    Phenomena. Eds. G. C. Kuczynske, N. A. Hooton, and G. F. Gibbon, Gordon
    Breach, New York (1967).
    20. F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2]
    83-88 (1984)
    21. 高濂,孫靜,劉陽橋, “奈米粉體的分散及表面改性 Nano Powder Dispersion and Surface Modification” ,五南圖書出版公司
    22. M. Kaelin,D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari,“CIS and CIGS layers from selenized nanoparticle precursors”, Thin Solid Films 431 –432 (2003)
    23. M. Ganchev , J. Kois , M. Kaelin , S. Bereznev , E. Tzvetkova , O. Volobujeva , N. Stratieva ,A. Tiwari “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors”,Thin Solid Films 511 – 512 (2006) 325 – 327
    24. SeJin Ahn, ChaeWoong Kim, JaeHo Yun, JeongChul Lee, KyungHoon Yoon, “Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles”, Solar Energy Materials & Solar Cells 91 (2007) 1836–1841
    25. Xuege Wang, Sheng. S. Li, W.K. Kim, S. Yoon, V. Craciun,J.M. Howard, S. Easwaran, O. Manasreh,O.D. Crisalle, T.J. Anderson,“Investigation of rapid thermal annealing on Cu(In,Ga)Se2 films and solar cells,” Solar Energy Materials & Solar Cells 90 (2006) 2855–2866
    26. V.F. Gremenoka,_, E.P. Zaretskayaa, V.B. Zalesskib, K. Bentec,W. Schmitzc, R.W. Martind, H. Mollere,“Preparation of Cu(In,Ga)Se2 thin film solar cells
    by two-stage selenization processes using N2 gas” , Solar Energy Materials & Solar Cells 89 (2005) 129–137
    27. M. Kaelin, D. Rudmann, A.N. Tiwari , “Low cost processing of CIGS thin film solar cells” , Solar Energy 77 (2004) 749–756
    28. J.D. Park, J. Korean Phys. Soc. 25 (1992) 536-540
    29. N. Yamamoto , S. Ishida, and H. Horinaka, "Solid State Growth of CuInSe2 and CuInTe2," Jpn. J. Appl. Phys 28, 1780-1783 (1989).
    30. C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, and J.J.Moore,"Synthesis and processing of a Cu-In-Ga-Se sputtering target" Thin Solid Film 332
    (1998) 340-344.
    31. M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg and A.N.Tiwari,"CIS and CIGS layers from selenized nanoparticle precursors" Thin Solid Films 431 –432 (2003) 58–62
    32. Coble,R.L.,”Diffusion models for hot pressing with surface energy and pressure effects as driving force”,J.Appl.Phy.,41 , 4798,1970

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE