| 研究生: |
陳願年 Chen, Yuan-Nien |
|---|---|
| 論文名稱: |
二氧化鈦奈米電紡纖維在光捕獲現象與增強光觸媒之研究 Light Propagation and Enhanced Photocatalytic Activities in Electrospun Titania Nanofibers |
| 指導教授: |
郭昌恕
Kuo, Changshu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 奈米纖維 、電紡絲 、二氧化鈦 、水分解 、光電流 、氫氣製造 、光捕獲 |
| 外文關鍵詞: | Photocurrent, Light-propagation, Nanofibers, Titanium Dioxide, Hydrogen Production, Electrospinning, Water splitting |
| 相關次數: | 點閱:118 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中以聚乙烯吡咯烷酮(PVP)與四異丙烷氧化鈦(TTIP)作為電紡絲的溶膠─凝膠配方,藉由電紡絲技術製備二氧化鈦奈米纖維。後續製程以450oC鍛燒去除有機物並使PVP/TTIP混合奈米纖維轉變為銳鈦礦相的二氧化鈦奈米纖維。如同穿透式分光光譜所證,當光在自由散佈的二氧化鈦奈米纖維中散射時,二氧化鈦奈米纖維可作為光捕獲的基材。仔細驗證相對變寬的散射光譜跟二氧化鈦奈米纖維的直徑及厚度的關係。直徑200到450奈米的二氧化鈦奈米纖維與最大散射強度的波長範圍350到650奈米有很高的相依性。最大散射強度的波長和所對應的二氧化鈦奈米纖維直徑之間的線性相關與米氏散射理論相當的一致。此外,在紫外光照射下所量測的二氧化鈦奈米纖維的光電流和氫氣產量,是利用重量、纖維表面積與BET的表面積作校正。這兩組實驗皆證明了二氧化鈦奈米電紡纖維的光捕獲現象隨著厚度線性增強,而光捕獲現象也顯著地增加照光能量的轉換效率。
Titania nanofibers were fabricated by an electrospinning technique using poly(vinylpyrrolidione) (PVP) and titanium tetraisopropoxide (TTIP) as electrospinning sol-gel formulas. Post calcination process at 450oC removed the organic contents and converted the as-spun PVP/TTIP blends to anatase titania nanofibers. Randomly deposited titania nanofibers acted as the light propagation matrix where the light scattering took place as evidenced by their transmission UV-vis spectra. Relatively-broadened scattering UV-vis spectra as functions of titania fiber diameters and deposition thicknesses were carefully examined. The wavelength with maximum scattering outputs ranged from 350 to 650nm was highly depended on the diameters of titania nanofibers from 200 to 450nm. The linear correlation between maximum scattering wavelengths and titania fiber diameters was found in a good agreement with the Mie scattering theory. In addition, photocurrents and hydrogen productions of these titania nanofibers were measured under the UV irradiation with normalization by sample weights, fiber surface areas, and BET surface areas. Both investigations confirmed the light propagation in electrospun titania nanofibers linearly increased with the deposition thicknesses, which also significantly improved the efficiency of irradiation energy conversions.
1. Ashokkumar, M., An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energy 1998, 23, (6), 427.
2. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, (5358), 37.
3. Baltazar, V.; Piron, D. L.; Gul, T., Electrolysers for hydrogen production -- an international marketing study. International Journal of Hydrogen Energy 1988, 13, (2), 61-66.
4. Gavala, H. N.; Skiadas, I. V.; Ahring, B. K., Biological hydrogen production in suspended and attached growth anaerobic reactor systems. International Journal of Hydrogen Energy 2006, 31, (9), 1164-1175.
5. Yu, Z. G.; Pryor, C. E.; Lau, W. H.; Berding, M. A.; MacQueen, D. B., Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production. J. Phys. Chem. B 2005, 109, (48), 22913-22919.
6. Ikuma, Y.; Bessho, H., Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. International Journal of Hydrogen Energy 2006, In Press, Corrected Proof.
7. Wang, J.; Zhang, G.; Zhang, Z.; Zhang, X.; Zhao, G.; Wen, F.; Pan, Z.; Li, Y.; Zhang, P.; Kang, P., Investigation on photocatalytic degradation of ethyl violet dyestuff using visible light in the presence of ordinary rutile TiO2 catalyst doped with upconversion luminescence agent. Water Research 2006, 40, (11), 2143-2150.
8. Hong, J.; Sun, C.; Yang, S.-G.; Liu, Y.-Z., Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps. Journal of Hazardous Materials 2006, 133, (1-3), 162-166.
9. Chai, S.; Kim, Y.; Lee, W., Photocatalytic WO3/TiO2 nanoparticles working under visible light. Journal of Electroceramics 2006, 17, (2), 909-912.
10. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 2004, 32, (1-2), 33.
11. Shangguan, W.; Yoshida, A.; Chen, M., Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol-gel processes. Solar Energy Materials and Solar Cells 2003, 80, (4), 433.
12. Ovenstone, J.; Yanagisawa, K., Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination. Chemistry of Materials 1999, 11, (10), 2770-2774.
13. Hashimoto, K.; Irie, H.; Fujishima, A., TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 2005, 44, (12), 8269-8285.
14. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11, (3), 401.
15. Kazuhiro Sayama, H. A., Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension. J. Chem. Soc., Chem. Commun 1992, 150-152.
16. Wu, N.-L.; Lee, M.-S., Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy 2004, 29, (15), 1601-1605.
17. Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M., Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au---TiO2 and Pt---TiO2. Journal of Photochemistry and Photobiology A: Chemistry 1995, 89, (2), 177-189.
18. Litter, M. I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental 1999, 23, (2-3), 89-114.
19. Wilke, K.; Breuer, H. D., The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A: Chemistry 1999, 121, (1), 49-53.
20. Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M., Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 2004, 265, (1), 115-121.
21. Okada, M.; Yamada, Y.; Jin, P.; Tazawa, M.; Yoshimura, K., Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity. Thin Solid Films 2003, 442, (1-2), 217-221.
22. Gurunathan, K.; Maruthamuthu, P.; Sastri, M. V. C., Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 AND Pt/SnO2/RuO2 in aqueous methyl viologen solution. International Journal of Hydrogen Energy 1997, 22, (1), 57-62.
23. Dhanalakshmi, K. B.; Latha, S.; Anandan, S.; Maruthamuthu, P., Dye sensitized hydrogen evolution from water. International Journal of Hydrogen Energy 2001, 26, (7), 669-674.
24. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 2002, 148, (1-3), 257-261.
25. Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis 216, (1-2), 505-516.
26. Tzung-Ying, S., Electrospun Titanium Dioxide Nanofibers for Hydrogen Production by UV-Induced Water Splitting. 2007.
27. Li, Y.; Lu, G.; Li, S., Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere 2003, 52, (5), 843-850.
28. Kida, T.; Guan, G.; Yamada, N.; Ma, T.; Kimura, K.; Yoshida, A., Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. International Journal of Hydrogen Energy 2004, 29, (3), 269-274.
29. Peng, S.; Li, Y.; Jiang, F.; Lu, G.; Li, S., Effect of Be2+ doping TiO2 on its photocatalytic activity. Chemical Physics Letters 2004, 398, (1-3), 235-239.
30. Yoko, T.; Hu, L.; Kozuka, H.; Sakka, S., Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method. Thin Solid Films 1996, 283, (1-2), 188.
31. Adam, D., A fine set of threads. Nature 2001, 411, (6835), 236-236.
32. Dzenis, Y., MATERIAL SCIENCE: Spinning Continuous Fibers for Nanotechnology. Science 2004, 304, (5679), 1917-1919.
33. Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63, (15), 2223.
34. Formhals, A., Process and Apparatus for Preparing Artificial Threads. US patent 1934, 1, 975,504.
35. MacIas, M.; Chacko, A.; Ferraris, J. P.; Balkus Jr, K. J., Electrospun mesoporous metal oxide fibers. Microporous and Mesoporous Materials 2005, 86, (1-3), 1-13.
36. Li, D.; Wang, Y.; Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, (8), 1167-1171.
37. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 2003, 3, (4), 555-560.
38. Larsen, G.; Velarde-Ortiz, R.; Minchow, K.; Barrero, A.; Loscertales, I. G., A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-gel Chemistry and Electrically Forced Liquid Jets. Journal of the American Chemical Society 2003, 125, (5), 1154-1155.
39. Kataphinan, W.; Teye-Mensah, R.; Evans, E. A.; Ramsier, R. D.; Reneker, D. H.; Smith, D. J. In High-temperature fiber matrices: Electrospinning and rare-earth modification, Papers from the 49th International Symposium of the American Vacuum Society, Denver, Colorado (USA), 2003; AVS: Denver, Colorado (USA), 2003; pp 1574-1578.
40. Sung-Seen, C.; Seung Goo, L.; Seung Soon, I.; Seong Hun, K.; Joo, Y. L., Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters 2003, 22, (12), 891-893.
41. Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J., Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning. Applied Physics A: Materials Science & Processing 2004, 78, (7), 1043-1047.
42. Zhang, G.; Kataphinan, W.; Teye-Mensah, R.; Katta, P.; Khatri, L.; Evans, E. A.; Chase, G. G.; Ramsier, R. D.; Reneker, D. H., Electrospun nanofibers for potential space-based applications. Materials Science and Engineering B 2005, 116, (3), 353-358.
43. Taylor, G., Electrically Driven Jets. Proceedings of Royal Society of London A:Mathematical and Physical Sciences 1969, 313, 453.
44. Mie, G., Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal Solutions. Annals of Physics 1908, 25, (3), 377-445.
45. Ghannam, M. Y.; Abouelsaood, A. A.; Nijs, J. F., A semiquantitative model of a porous silicon layer used as a light diffuser in a thin film solar cell. Solar Energy Materials and Solar Cells 2000, 60, (2), 105-125.
46. Abouelsaood, A. A.; Ghannam, M. Y.; Stalmans, L.; Poortmans, J.; Nijs, J. F., Experimental testing of a random medium optical model of porous silicon for photovoltaic applications. Progress in Photovoltaics: Research and Applications 2001, 9, (1), 15-26.
47. Seel, H.; Brendel, R., Optical absorption in crystalline Si films containing spherical voids for internal light scattering. Thin Solid Films 2004, 451-452, 608-611.
48. Zettner, J.; Thoenissen, M.; Th, H.; Brendel, R.; Schulz, M., Novel porous silicon backside light reflector for thin silicon solar cells. Progress in Photovoltaics: Research and Applications 1998, 6, (6), 423-432.
49. Rinke, T. J. B., R. B.; Bruggemann, R.; Werner, J. H., Ultrathin quasi-monocrystalline silicon films for electronic devices. . Diffusion and Defect Data--Solid State Data, Pt. B: Solid State Phenomena 1999, 67-68, 229-234.
50. Bilyalov, R.; Solanki, C. S.; Poortmans, J.; Richard, O.; Bender, H.; Kummer, M.; von Kanel, H., Crystalline silicon thin films with porous Si backside reflector (abstract only). Solar Energy Materials and Solar Cells 2002, 72, (1-4), 221-221.
51. Nieuwenhuysen, K. V.; Duerinckx, F.; Kuzma, I.; Gestel, D. v.; Beaucarne, G.; Poortmans, J., Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC. Journal of Crystal Growth 2006, 287, (2), 438-441.
52. Bergman, D. J., The dielectric constant of a composite material--A problem in classical physics. Physics Reports 1978, 43, (9), 377-407.
53. Thei, W., Optical properties of porous silicon. Surface Science Reports 1997, 29, (3-4), 91-192.
54. Okuya, M.; Nakade, K.; Kaneko, S., Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2002, 70, (4), 425-435.
55. Okuya, M., Prokudina, Nina A., Mushika, Katsuya, Kaneko, Shoji, TiO2 thin films synthesized by the spray pyrolysis deposition (SPD) technique. Journal of the European Ceramic Society 1999, 19, (6-7), 903-906.
56. Zhu, R.; Jiang, C.-Y.; Liu, X.-Z.; Liu, B.; Kumar, A.; Ramakrishna, S., Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Applied Physics Letters 2008, 93, (1), 013102-3.
57. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123, (8), 1613.
58. Christophe, J. B.; Francine, A.; Pascal, C.; Marie, J.; Frank, L.; Valery, S.; Michael, G., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society 1997, 80, (12), 3157-3171.
59. Shie, T.-Y. C., Jiun-Yu; Kuo, Changshu, Photoresponse of TiO2 nanofiber electrodes for photoelectrochemical water splitting. 234th ACS 2007.
60. Zheng, M.-p.; Gu, M.-y.; Jin, Y.-p.; Wang, H.-h.; Zu, P.-f.; Tao, P.; He, J.-b., Effects of PVP on structure of TiO2 prepared by the sol-gel process. Materials Science and Engineering B 2001, 87, (2), 197-201.
61. Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.; Amenitsch, H.; Babonneau, F., Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers: Detailed Characterization and Formation Mechanism. Chemistry of Materials 2001, 13, (5), 1848-1856.
62. Fujimoto, M. O., Tomoya; Suzuki, Hisao; Koyama, Hiroshi; Tanaka, Junzo, Nanostructure of TiO2 nano-coated SiO2 particles. Journal of the American Ceramic Society 2005, 88, (11), 3264-3266.
63. Lai, Y. K.; Sun, L.; Chen, C.; Nie, C. G.; Zuo, J.; Lin, C. J., Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate. Applied Surface Science 2005, 252, (4), 1101-1106.
64. Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental 2001, 32, (4), 215-227.
65. Song, M. Y.; Kim, D. K.; Jo, S. M.; Kim, D. Y., Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synthetic Metals 2005, 155, (3), 635-638.
66. Yang, Y. Z.; Chang, C. H.; Idriss, H., Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh). Applied Catalysis B: Environmental 2006, 67, (3-4), 217-222.
67. Chiarello, G. L.; Selli, E.; Forni, L., Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Applied Catalysis B: Environmental 2008, 84, (1-2), 332-339.