簡易檢索 / 詳目顯示

研究生: 周泰成
Chou, Tai-Cheng
論文名稱: 以環狀糊精為基材製備親和性吸附劑以及對澱粉水解酵素吸附脫附之探討
Investigation of beta-cyclodextrin based affinity adsorbents for the adsorption and desorption of alpha-amylase
指導教授: 許梅娟
Syu, Mei-Jyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 65
中文關鍵詞: 固定化金屬離子親和性層析法Beta 型環狀糊精環氧氯丙烷DADPAAlpha 型澱粉水解酵素EDTA
外文關鍵詞: EDTA, Alpha-amylase, DADPA, EPI, immobilized metal affinity chromatography, Beta-CD
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 純化在生化產業中是非常重要的步驟,其中親和性層析法 (affinity chromatography) 頗受重視是因其專一性的純化特性,可以有效且快速的將產物分離,藉此達到降低成本的目的,並且提高產業的競爭力。
    本論文主要是以固定化金屬離子親和性層析法 (immobilized metal affinity chromatography) 對alpha 型澱粉水解酵素(alpha-amylase) 進行吸脫附的研究與探討。研究是以 beta 型環狀糊精 (beta-cyclodextrin,beta-CD) 與環氧氯丙烷 (epichlorohydrin, EPI) 形成的交聯物為擔體,再分別鍵結IDA或cibacron blue F3G-A或DADPA為配位基並螯合銅離子製備固定化金屬離子親和性吸附劑;其中以 beta-CD CL-DADPA-Cu2+ 的吸附效果最高可達99%,而以EDTA脫附時,其脫附效果也高達98%。
    綜合上述之結果,本研究是以擔體鍵結DADPA並螯合銅離子所製備而成的吸附劑,具有最好的吸附與脫附效果。

    Purification is essential in the biochemical industry. The approach of affinity chromatography is widely applied because of its specificity as well as its separate efficiency.
    The aim of this dissertation is to discuss the absorption and desorption the immobilized metal affinity adsorbent for alpha-amylase. In this work, the matrix beta-CD was cross-linked with EPI, then further immobilized with the ligand such as IDA, cibacron blue F3G-A, and DADPA respectively. In addition Cu2+ was chelated on the matrix to form immobilized metal affinity adsorbent. Among these adsorbents being studied, beta-CD CL-DADPA-Cu2+ shows best adsorption result of 99%. Meanwhile, of EDTA shows best result of desorption which can reach up to 98%.
    In conclusion, the affinity adsorbent beta-CD CL-DADPA-Cu2+ can reach best performance on adsorption and desorption.

    表目錄 I 圖目錄 II 第一章 緒論 1 1-1 Alpha-Amylase之簡介 1 1-2 生化產物之分離與純化 1 1-3 層析法之定義與分類 2 1-3-1 親和性層析 (Affinity chromatography) 之原理 3 1-4 擔體 (Matrix) 4 1-5 配位基 (Ligands) 5 1-6 固定化金屬離子親和性層析 (Immobilized metal-ion affinity chromatography ,IMAC) 6 1-7 環狀糊精 (Cyclodextrin) 之簡介 7 1-8 環狀糊精在親和性層析之應用 8 第二章 實驗材料與方法 10 2-1 酵素之活性測定方法 10 2-2 Beta-Cyclodextrin CL (-CD CL) 擔體之製備 10 2-2-1 以環氧氯丙烷 (epichlorohydrin, EPI) 為交聯劑製備 beta-CD CL擔體 10 2-2-2 以不同交聯劑製備beta-CD CL擔體 10 2-3 不同吸附劑之製備 11 2-3-1 A1吸附劑之製備 11 2-3-2 B1吸附劑之製備 11 2-3-3 C1吸附劑之製備 12 2-3-4 A2、B2、C2吸附劑之製備 12 2-3-5 D1、D2、D3吸附劑之製備 12 2-4 Alpha-amylase之吸附行為 12 2-4-1 以不同吸附劑吸附 alpha-amylase溶液 12 2-4-2 以 D2吸附劑吸附不同濃度之 alpha-amylase溶液 12 2-4-3 以不同粒徑之D2吸附劑吸附 alpha-amylase溶液 13 2-4-4 以不同交聯程度擔體製備之D2吸附劑吸附 alpha-amylase溶液 13 2-4-5 以不同濃度配位基製備之D2吸附劑吸附 alpha-amylase溶液 13 2-4-6 以D2 吸附劑吸附發酵液中之 alpha-amylase 13 2-5 脫附吸附劑上之 alpha-amylase 13 2-5-1 以咪唑溶液脫附不同質量的吸附劑上之 alpha-amylase 13 2-5-2 以不同濃度之咪唑溶液脫附於吸附劑上之 alpha-amylase 13 2-5-3 以不同濃度之EDTA溶液脫附於吸附劑上之 alpha-amylase 14 2-5-4 以EDTA溶液脫附不同量的吸附劑上之 alpha-amylase 14 2-5-5 以EDTA溶液脫附與發酵液反應之A2 吸附劑 14 2-6 銅離子之濃度校正 14 2-7 實驗藥品 17 2-8 實驗儀器 19 第三章 結果與討論 20 3-1 Beta型環狀糊精之交聯反應 20 3-2 以 beta-CD CL為擔體製成之親和性吸附劑對 alpha-amylase吸附之探討 22 3-2-1 以IDA為配位基製備親和性吸附劑進行 alpha-amylase之吸附探討 24 3-2-2 以cibacron blue F3G-A為配位基所製成之親和性吸附劑 之探討 24 3-2-3 以DADPA為配位基所製成之親和性吸附劑之探討 25 3-3 以 beta-CD CL-DADPA-Cu2+ 為吸附劑之探討 30 3-3-1 以吸附劑吸附不同濃度 alpha-amylase之探討 30 3-3-2 以不同量之吸附劑吸附 alpha-amylase之探討 30 3-4 以咪唑溶液脫附已吸附 alpha-amylase之 beta-CD CL-DADPA-Cu2+ 吸附劑之探討 35 3-4-1 以咪唑溶液脫附不同量已吸附 alpha-amylase之吸附劑之探討 35 3-4-2 以不同濃度之咪唑溶液脫附已吸附 alpha-amylase之吸附劑之探討 41 3-5 EDTA 溶液脫附已吸附 alpha-amylase之 -CD CL-DADPA-Cu2+ 吸附劑之探討 44 3-5-1 以不同濃度EDTA溶液對已吸附 alpha-amylase之吸附劑之探討 44 3-5-2 以EDTA溶液對不同量已吸附 alpha-amylase之吸附劑之探討 44 3-6 不同交聯比例 (beta-CD:EPI) 之擔體製備 beta-CD CL-DADPA-Cu2+ 48 3-6-1 以不同交聯比例 (beta-CD:EPI) 之 beta-CD CL-DADPA-Cu2+ 對 alpha-amylase吸附之探討 48 3-7 以不同濃度之配位基製備 beta-CD CL-DADPA-Cu2+ 50 3-7-1 以不同濃度之配位基製備 beta-CD CL-DADPA-Cu2+ 對 alpha-amylase吸附之探討 50 3-8 不同粒徑之親和性吸附劑 53 3-8-1 以不同粒徑之親和性吸附劑對 alpha-amylase吸附之探討 53 3-9 不同交聯程度幾丁聚醣 (chitosan) 為擔體製備 chitosan-EDTA-Cu2+ 對 alpha-amylase進行吸附之探討 58 3-10 以 beta-CD CL-DADPA-Cu2+ 為吸附劑吸附與脫附發酵液中之 alpha-amylase 60 第四章 結論 61 參考文獻 63 表目錄 表1-1 各種層析法吸附劑之專一性 6 表2-1 不同吸附劑之組成與代號 11 表3-1-1 不同體積EPI對 beta-CD交聯程度之影響 21 表3-1-3 以不同交聯劑交聯 beta-CD之探討 20 表3-2-1 以 beta-CD CL為擔體製成之不同親和性吸附劑對 alpha-amylase之吸附 22 表3-2-2 以IDA為配位基製成不同親和性吸附劑對 alpha-amylase之吸附 24 表3-2-3 銅離子於 beta-CD CL-DADPA上鍵結情形 24 表3-2-4 以cibacron blue F3G-A為配位基製成之不同親和性吸附劑對 alpha-amylase之吸附 26 表3-2-5 以DADPA為配位基製成之不同親和性吸附劑對 alpha-amylase之吸附 28 表3-2-6 銅離子於 beta-CD CL-DADPA上鍵結情形 28 表3-3-1 以 beta-CD CL-DADPA-Cu2+ 為吸附劑對不同 alpha-amylase濃度之吸附 31 表3-3-2 以不同量 beta-CD CL-DADPA-Cu2+ 為吸附劑對10 mL alpha-amylase之吸附 31 表3-4-1 以10 mL咪唑溶液對已吸附 alpha-amylase之不同量吸附劑之脫附 41 表3-4-2 以不同濃度之咪唑溶液對已吸附 alpha-amylase吸附劑之脫附 41 表3-5-1 以不同濃度之EDTA對已吸附 alpha-amylase吸附劑之脫附 45 表3-5-2 以EDTA溶液對不同量已吸附 alpha-amylase吸附劑之脫附 45 表 3-6-1 不同交聯比例 (beta-CD:EPI) 之 beta-CD CL-DADPA-Cu2+ 對 alpha-amylase之吸附 48 表3-7-1 以不同濃度之配位基製備螯合金屬親和性吸附劑對 alpha-amylase之吸附與脫附 50 表3-7-2 銅離子於 beta-CD CL-DADPA上鍵結情形 52 表3-7-3 DADPA鍵結於 beta-CD CL殘餘量之比較 52 表3-8-1 不同粒徑之平均粒徑與比表面積 53 表3-8-2 以不同粒徑之親和性吸附劑對 alpha-amylase之吸附 53 表3-9 以不同交聯程度幾丁聚醣為擔體製備親和性吸附劑對 alpha-amylase 之吸附 58 表3-10-1 以吸附劑吸附與脫附發酵液中之 alpha-amylase 60 圖目錄 圖1-1 Alpha-Amylase之胺基酸序列 1 圖1-2 蛋白質純化分離之流程圖 2 圖1-3 親和性層析之過程示意圖 4 圖1-4 固定化金屬離子吸附劑之結構 8 圖1-5 (a) Alpha 型環狀糊精、(b) Beta 型環狀糊精、(c) Gama 型環狀糊精之化學結構式 9 圖2-1 Alpha-Amylase溶液之濃度檢量線 15 圖2-2 硫酸銅溶液於波長600 nm下濃度對吸光值之檢量線 16 圖3-2-1 Beta-CD CL-CBF3GA、beta-CD CL-CBF3GA-Cu2+、beta-CD CL-CBF3GA-Cu2+ (含水)、beta-CD CL-DADPA-Cu2+ 與beta-CD CL-DADPA-Cu2+ (含水) 之吸附曲線 23 圖3-2-2 Beta-CD CL-CBF3GA與 beta-CD CL-CBF3GA-Cu2+ 之吸附曲線 27 圖3-2-3 Beta-CD CL-DADPA-Cu2+ 與含水 beta-CD CL-DADPA-Cu2+ 之吸附曲線 29 圖3-3-1 以 beta-CD CL-DADPA-Cu2+ 吸附不同濃度 alpha-amylase之吸附曲線 32 圖3-3-2 以不同量 beta-CD CL-DADPA-Cu2+ 吸附 alpha-amylase之吸附曲線 33 圖3-3-3 吸附平衡曲線圖 34 圖3-4-1 咪唑溶液脫附之示意圖 35 圖3-4-2 Beta-CD之XPS圖 36 圖3-4-3 Beta-CD CL之XPS圖 37 圖3-4-4 Beta-CD CL-DADPA-Cu2+ 之XPS圖 38 圖3-4-5 Beta-CD CL-DADPA-Cu2+ 吸附 alpha-amylase之XPS圖 39 圖3-4-6 以咪唑脫附後吸附劑之XPS圖 40 圖3-4-7 以咪唑溶液對已吸附 alpha-amylase之不同量吸附劑之脫附曲線 42 圖3-4-8 以不同濃度之咪唑溶液對已吸附 alpha-amylase吸附劑之脫附曲線 43 圖3-5-1 以EDTA脫附 alpha-amylase之示意圖 44 圖3-5-2 以不同濃度之EDTA對已吸附 alpha-amylase吸附劑之脫附曲線 46 圖3-5-3 以EDTA溶液對不同量已吸附 alpha-amylase吸附劑之脫附曲線 47 圖3-6-1 不同交聯比例 (beta-CD:EPI) 之 beta-CD CL-DADPA-Cu2+ 對 alpha-amylase之吸附曲線 49 圖3-7-1 以不同濃度之配位基製備 beta-CD CL-DADPA-Cu2+ 對 alpha-amylase之吸附曲線 51 圖3-8-1 以不同粒徑之 beta-CD CL-DADPA-Cu2+ 對 alpha-amylase之吸附曲線 54 圖3-8-2 以顯微鏡拍攝不同粒徑之 beta-CD CL-DADPA-Cu2+ 55 圖3-8-3 各種粒徑 beta-CD CL-DADPA-Cu2+ 之SEM圖 56 圖3-8-4 Beta-CD CL-DADPA-Cu2+ 攪拌前後之SEM圖 57 圖3-9 以不同交聯程度幾丁聚醣為擔體製備親和性吸附劑吸附 alpha-amylase之吸附曲線 59

    1. D. W. S. Wong, G. H. Robertson, S. J. Tillin and C. Wong, “Phage-displayed peptide ligands for pancreatic alpha-amylase cross-react with Barley alpha-amylase”, Journal of Agricultural and Food Chemistry, 47, pp. 3934-3937, 1999.
    2. P. Krieg, B. Lendl, R. Vonach and R. Kellner, “Determination of alpha-amylase activity using Fourier transform infrared spectroscopy”, Fresenius’ Journal of Analytical Chemistry, 356, pp. 504-507, 1996.
    3. J. F. van Staden and L. V. Mulaudzi, “Flow injection spectrophotometric assay of alpha-amylase activity”, Analytica Chimica Acta, 421, pp. 19-25, 2000.
    4. 王三郎,應用微生物學,高立圖書有公司,民國 86 年五月, pp. 205-207, 1997.
    5. H. Chung and F. Friedberg, “Sequnce of the N-terminal half of Bacillus amyloliquefaciens alpha-amylase”, The Biochemical Journal, 185(2), pp. 387-395, 1980.
    6. M. Andersson, M. Ramberg and B. L. Johansson, “The influence of the degree of cross-linking, type of ligand and support on the chemical stability of chromatography media intended for protein purification”, Process Biochemistry, 33(1), pp. 47-55, 1998.
    7. B. M. Brena, C. Pazos, F. F. Laura and B. V. Francisco, “Review chromatography methods for amylases”, Journal of Chromatography B, 684, pp. 217-237, 1996.
    8. M. Wilcheck and T. Miron, “Thirty years of affinity chromatography”, Reactive and Functional Polymers, 41, pp. 263-268, 1999.
    9. I. Lauer, B. Bonnewitz, A. Meunier and M. Beverini, “New approach for separating Bacillus subtilis metalloprotease and alpha-amylase by affinity chromatography and for purifying neutral protease by hydrophobic chromatography”, Journal of Chromatography B, 737, pp. 177-284, 2000.
    10. P. Vretblad, “Immobilization of ligands for biospecific affinity chromatography via their hydroxyl groups. The cyclohexaamylose-alpha-amylase system”, FEBS Letters, 47(1), pp. 86-89, 1974.
    11. S. R. Narayanan, “Review preparative affinity chromatography of protein”, Journal of Chromatography A, 658, pp. 237-258, 1994.
    12. A. Totsuka and C. Fukazawa, “Affinity purification of alpha-amylase originating from plant using cyclomaltohexaose-immobilized sepharose 6B in the presence of ammonium sulfate”, Protein Expression and Purification, 4, pp. 333-336, 1993.
    13. E. Boschetti, “Review advanced sorbents for preparative protein separation purposes”, Journal of Chromatography A, 658, pp. 207-236, 1994.
    14. C. A. Costa and J. S. Cabral, Chromatographic and Membrane Processes in Biotechnology, Kluwer Academic Publishers, The Netherlands, 1991.
    15. M. Belew, T. T. Yip, L. Andersson and J. Porath, “Interaction of protein with immobilized Cu2+ quantitation of adsorption capacity, adsorption isotherms and equilibrium constants by frontal analysis”, Journal of Chromatography, 403, pp. 197-206, 1987.
    16. Y. Kato, K. Nakamura and T. Hashimoto, “High-performance metal chelate affinity chromatography of proteins”, Journal of Chromatography, 354, pp. 511-517, 1986.
    17. J. Porath, “High-performance immobilized-metal-ion affinity chromatography of peptides and proteins”, Journal of Chromatography, 443, pp. 3-11, 1988.
    18. S. Vunnum, S. R. Gallant, Y. J. Kim and S. M. Cramer, “Immobilized metal affinity chromatography: modeling of nonlinear multicomponent equilibrium”, Chemical Engineering Science, 50(11), pp. 1785-1803, 1995.
    19. L. Gelünaitė, V. Lukša, O. Südžiuvienė, V. Bumelis and H. Pesliakas, “Chelated mercury as a ligand in immobilized metal ion affinity chromatography of proteins”, Journal of Chromatography A, 904, pp. 131-143, 2000.
    20. J. Porath and B. Olin, “Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions”, Biochemistry, 22, pp. 1621-1630, 1983.
    21. J. Porath, B. Olin and B. Granstrand, “Immobilized-metal affinity chromatography of serum protein on gel immobilized group III A metal ions”, Archives of Biochemistry and Biophysics, 225, pp. 543-547, 1983.
    22. R. J. Todd, R. D. Johnson and F. H. Arnold, “Multiple-site binding interactions in metal-affinity chromatography I. equilibrium binding of engineered histidine containing cytochromes c”, Journal of Chromatography A, 622, PP. 13-26, 1994.
    23. 劉國詮,生物工程下游技術-細胞培養、分離純化、分析檢測,曉園出版社,民國 86 年九月,1997.
    24. S. Bernhardt, P. Glöckner and H. Ritter, “Cyclodextrins in polymer synthesis: Influence of methylated beta-cyclodextrin as host on the free radical copolymerization reactivity ratios of hydrophobic acrylates as guest monomers in aqueous medium”, Polymer Bulletin, 46, pp. 153-157, 2001.
    25. L. M. Hamilaton, C. T. Kelly and W. M. Fogarty, “Review: cyclodextrins and their interaction with amylolytic enzymes”, Enzyme and Microbial Technology, 26, pp. 561-567, 2000.
    26. Szejtli, Jozsef, Fenyvesi, Eva, Zoltan, Sandor, Zsadon, Bela, Tudos and Ferenc, “Cyclodextrin-polyvinyl alcohol polymers and a process for the preparation thereof in a pearl, foil, fiber or block form”, United States Patent, 4,274,985, 1981.
    27. W. L. Hinze and D. W. Armstrong, Ordered Media in Chemical Separations, American Chemical Society, New York, 1987.

    下載圖示 校內:2006-08-26公開
    校外:2006-08-26公開
    QR CODE