| 研究生: |
吳文皓 Wu, Wen-Hao |
|---|---|
| 論文名稱: |
以實驗及數值方法預測創新管式熱交換器於空腔內的自然對流熱傳特性 Estimation of Natural Convection Heat Transfer Characteristics of Innovative Tube Heat Exchangers in a Cavity by Experimental and Numerical Method |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 逆向數值方法 、CFD 、U型管 、熱交換器 、自然對流 |
| 外文關鍵詞: | Inverse numerical method, CFD, U-shaped tube, Heat exchanger, Natural convection |
| 相關次數: | 點閱:87 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以CFD軟體結合傳統逆向方法來分析管式熱交換器於自然對流之熱傳及流動特性,並配合實驗數據來驗證其準確度,透過創新型U型加熱管及傳統板式熱交換器來深入研究管間距及角度之變化所造成之影響,期望能得到最佳效率之組合。結果顯示流動模式選用Zero-equation最省時且不失精準,透過分析實驗及模擬數據可以發現,當U型管軸向平行於熱板時,散熱效率隨管間距的提升而增加;而U型管軸向垂直於熱板時,則是較小之管間距,散熱效率較佳,因此在探討熱源間距時,應同時考慮U型管之擺放方式,不同U型管擺放方向對於空腔之對流發展影響甚大,且U型管傾斜角度之變化,對於模型之熱傳性能也會有所不同,當中又以45˚傾斜時熱傳效率最好,最後發現該模型於Lv = 100 mm、θ = 45˚及 α = 0˚之組合時,整體對流發展較完整,熱傳性質也最佳,與最低效率之模型相比有著42% 之差距。
This study combines Computational Fluid Dynamics (CFD) simulation with traditional inverse method to analyze the heat transfer and flow characteristics of tube heat exchangers under natural convection. The experimental data is used to verify the accuracy of simulation. By using innovative U-shaped tube heater and plate heat exchanger, this study aims to investigate the effects of variation in tube spacing and angles. The goal is to identify the optimal combination for the highest efficiency.
The numerical results with experimental data show the Zero-equation model is the most preferable flow model in this paper. Additionally, when the placement angle of U-tube (α) is 0˚, the heat dissipation efficiency increases with larger spacing. On the other hand, when the placement angle of U-tube (α) is 90˚, smaller spacing shows better heat efficiency. Therefore, it is significant to consider both spacing and placement direction simultaneously as investigating the placement angle of U-tube. Changes in the inclination of U-tube also result in variations in the heat performance of the model. Among these variations, the asymmetric structure with θ = 45˚ demonstrates the best performance.
Finally, it was found that the model with the combination of Lv = 100 mm, θ = 45˚, and α = 0˚ has the most complete development of convective flow and the optimal heat transfer efficiency. Compared to the lowest ones, there is a difference of 42% in heat transfer efficiency.
1. Peksen, M., 3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM. International Journal of Hydrogen Energy, 2014. 39(10): p. 5137-5147.
2. Batchelor, G., Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Quarterly of Applied Mathematics, 1954. 12(3): p. 209-233.
3. Shu, C. and Y. Zhu, Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder. International journal for numerical methods in fluids, 2002. 38(5): p. 429-445.
4. Razzaghpanah, Z. and N. Sarunac, Natural convection heat transfer from a bundle of heated circular cylinders with staggered arrangement immersed in molten solar salt. International Journal of Heat and Mass Transfer, 2020. 156.
5. Seo, Y.M., M.Y. Ha, and Y.G. Park, A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part I: Size effect of a circular cylinder or an elliptical cylinder. International Journal of Heat and Mass Transfer, 2019. 134: p. 420-436.
6. Kumar, R., Study of natural convection in horizontal annuli. International journal of heat and mass transfer, 1988. 31(6): p. 1137-1148.
7. Lee, J.M., M.Y. Ha, and H.S. Yoon, Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. International Journal of Heat and Mass Transfer, 2010. 53(25-26): p. 5905-5919.
8. Park, Y.G., H.S. Yoon, and M.Y. Ha, Natural convection in square enclosure with hot and cold cylinders at different vertical locations. International Journal of Heat and Mass Transfer, 2012. 55(25-26): p. 7911-7925.
9. Zheng, J., L. Zhang, H. Yu, Y. Wang, and T. Zhao, Study on natural convection heat transfer in a closed cavity with hot and cold tubes. Sci Prog, 2021. 104(2): p. 368504211020965.
10. Reymond, O., D.B. Murray, and T.S. O’Donovan, Natural convection heat transfer from two horizontal cylinders. Experimental Thermal and Fluid Science, 2008. 32(8): p. 1702-1709.
11. Ashjaee, M. and T. Yousefi, Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays. Heat transfer engineering, 2007. 28(5): p. 460-471.
12. Narayan, S., A.K. Singh, and A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders. International Journal of Heat and Mass Transfer, 2017. 109: p. 278-292.
13. Tokura, I., H. Saito, K. Kishinami, and K. Muramoto, An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls. 1983.
14. Wang, J.-C., U-and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method. Microelectronics Reliability, 2014. 54(6-7): p. 1344-1354.
15. Huang, C.-H. and C.-H. Wang, The study on the improvement of system uniformity flow rate for U-type compact heat exchangers. International Journal of Heat and Mass Transfer, 2013. 63: p. 1-8.
16. Liang, T.S. and Y.M. Hung, Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes. Energy Conversion and Management, 2010. 51(11): p. 2109-2116.
17. Kim, H. and S. Oh, Evaluation of heat transfer coefficient during heat treatment by inverse analysis. Journal of Materials processing technology, 2001. 112(2-3): p. 157-165.
18. Chen, H.-T., J.-P. Song, and Y.-T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers. International Journal of Heat and Mass Transfer, 2005. 48(13): p. 2697-2707.
19. 賴健榮, 四圓管板鰭管式熱交換器之熱傳特性研究. 2011.
20. 呂致翰, 流動模式對交錯排列之板鰭圓管熱交換器的熱傳效能影響. 2013.
21. Chen, H.-T., S.-C. Chang, M.-H. Hsu, and C.-H. You, Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC. International Journal of Heat and Mass Transfer, 2021. 181.
22. 許名勛, 四管於封閉空腔內之三維自然對流的熱傳特性研究. 2021.
23. Li, W., H.-x. Li, G.-q. Li, and S.-c. Yao, Numerical and experimental analysis of composite fouling in corrugated plate heat exchangers. International Journal of Heat and Mass Transfer, 2013. 63: p. 351-360.
24. Zheng, N., P. Liu, Z. Liu, and W. Liu, Numerical simulation and sensitivity analysis of heat transfer enhancement in a flat heat exchanger tube with discrete inclined ribs. International Journal of Heat and Mass Transfer, 2017. 112: p. 509-520.
25. van Hooff, T., B. Blocken, and Y. Tominaga, On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Building and Environment, 2017. 114: p. 148-165.
26. Chen, H.-T. and J.-C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers. International Journal of Heat and Mass Transfer, 2006. 49(17-18): p. 3034-3044.
27. Chen, H.-T., S.-T. Lai, and L.-Y. Haung, Investigation of heat transfer characteristics in plate-fin heat sink. Applied Thermal Engineering, 2013. 50(1): p. 352-360.
28. Chen, H.-T., W.-X. Ma, and P.-Y. Lin, Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: Experimental and numerical study. International Journal of Heat and Mass Transfer, 2020. 147.
29. Chen, H.-T., Y.-S. Lin, P.-C. Chen, and J.-R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters. International Journal of Heat and Mass Transfer, 2016. 100: p. 320-331.
30. Chen, Q. and W. Xu, A zero-equation turbulence model for indoor airflow simulation. Energy and buildings, 1998. 28(2): p. 137-144.
31. Szablewski, W., BE Launder and DB Spalding, Mathematical Models of Turbulence. 169 S. m. Abb. London/New York 1972. Academic Press. Preis geb. $7.50. Zeitschrift Angewandte Mathematik und Mechanik, 1973. 53(6): p. 424-424.
32. Yakhot, V., S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 1992. 4(7): p. 1510-1520.
33. Launder, B.E. and D.B. Spalding, The numerical computation of turbulent flows, in Numerical prediction of flow, heat transfer, turbulence and combustion. 1983, Elsevier. p. 96-116.
34. Wolfshtein, M., The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. International Journal of Heat and Mass Transfer, 1969. 12(3): p. 301-318.
35. Arpaci, V.S., S.-H. Kao, and A. Selamet, Introduction to heat transfer. 1999: Prentice Hall.
36. Ghajar, A.J. and D. Yunus A. Cengel, Heat and Mass Transfer: Fundamentals and Applications. 2014: McGraw-Hill Education.