簡易檢索 / 詳目顯示

研究生: 陳詠晴
Chen, Yung-Ching
論文名稱: p53 和 Sp1 在雌激素調控的肺癌發展所扮演之角色
The Role of p53 and Sp1 in Estrogen-Mediated Lung Cancer Progression
指導教授: 洪建中
Hung, Jan-Jong
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 163
中文關鍵詞: 肺癌雌激素Sp1p53CD44DNMT1EMT
外文關鍵詞: lung cancer, estrogen, EMT, CD44, DNMT1, Sp1, p53
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據統計,男性肺癌的存活率高於女性。在這項研究中,我們發現雌性 EGFRL858R小鼠的腫瘤形成比雄性小鼠更顯著。 透過NGS的分析發現在肺癌細胞中p53 和 Sp1 的基因表現量在雌激素處理後下降。過去研究顯示,與肺癌男性相比,在肺癌晚期而非早期肺癌女性的p53突變率增加,而男性則是沒有差異。此結果表明雌激素抑制 p53 表達與女性肺癌預後不良有關。 EGFRL858R 誘導的p53缺失肺癌小鼠模型不僅改變了肺癌細胞中的基因表達,而且通過CCL5表現量上升 與GDF15表現量下降促進 M2 巨噬細胞的分化。我們研究也發現雌激素會增加DNA-甲基轉移酶1 (DNMT1)的表現並且增加p53啟動子的甲基化,導致p53表現量下降。除此之外,臨床統計結果顯示停經前的女性在肺癌晚期Sp1表現量降低,導致肺癌治療預後不良。在我們的結果表明Sp1 的缺失增加了雌激素抑制的 miR-3194、miR-135-5p、miR-182-5p 和 miR-193-5p的表現,進而增強肺癌細胞中 CD44 的表達,並且促進癌症的惡性發展。綜合以上我們發現的結果,發現女性肺癌患者中雌激素抑制的 p53 和 Sp1 表達不僅會影響癌細胞生長,還會影響腫瘤相關微環境,導致女性的肺癌患者預後不良。

    Survival rate of lung cancer is higher in men than in women. We found that tumor formation is significantly larger in female EGFRL858R transgenic mice than in male mice. Expression levels for p53 and Sp1 are downregulated in the estrogen-mediated, gene expression profile of lung cancer cells. In females, the p53 mutation rate is higher with late-stage, not early stage, lung cancer, compared to males with lung cancer, indicating that estrogen-inhibited p53 expression is related to a poor prognosis in females with lung cancer. We found that in mice, the knockout of p53 proteins in an EGFRL858R-induced lung cancer model changed the gene expression of cancer cells and increased the polarization of M2 macrophages by increasing the expression of CCL5 and decreasing the expression of GDF15. In addition, estrogen increased DNA methyltransferase-1 expression, which enhanced methylation in the promoter of TP53, which in turn led to a downregulation of p53. In addition, the expression of Sp1 declined in pre-menopausal women with late-stage lung cancer, resulting in poor cancer prognoses. The loss of Sp1 appeared to increase estrogen-inhibited miR-3194, miR-135-5p, miR-182-5p, and miR-193-5p, all of which enhanced CD44 expression in lung cancer cells and thus promoted cancer malignancy. We conclude that the estrogen-inhibited expression of p53 and Sp1 in females with lung cancer affects both their cancer cells and tumor-associated microenvironments, leading to a poor cancer prognosis in women.

    中文摘要 I ABSTRACT II ACKNOWLEDGMENT III CONTENTS IV INTRODUCTION 1 LUNG CANCER 1 ESTROGEN 2 P53 AND LUNG CANCER 4 P53 IS INVOLVED IN GENOMIC INSTABILITY 5 SECRETED PROTEINS IN TUMOR-ASSOCIATED MICROENVIRONMENT (TAM) 6 SP1 AND LUNG CANCER 7 DNMT1 IN CANCER 8 MICRORNA 10 HYPOTHESIS 11 MATERIAL AND METHODS 12 MATERIALS 12 METHODS 17 Cell culture and transfection 17 Lentivirus knockdown system 17 Chromatin immunoprecipitation 17 Immunohistochemistry 18 Animal care and animal models 19 Ovariectomy surgeries 19 Western blotting 20 Genomic DNA extraction 20 Reverse transcription – polymerase chain reaction (RT-PCR) 20 Wound healing and Chamber assay 22 Bisulfite sequencing assay 23 Fluorescence-activated cell sorting (FACS) 23 Luciferase reporter assay 24 Collection of specimens from lung cancer patients 24 Statistical analysis 24 RESULTS 25 PART I 25 Estrogen-inhibited p53 is related to a poor prognosis in females with lung cancer 25 Estrogen-induced DNMT1 expression increases DNA methylation of p53 to inhibit its transcriptional activity 26 Estrogen-inhibited p53 increases the differentiation of M2-macrophage 28 P53-mediated CCL5 and GDF-15 regulate M2-macrophage polarization to control cancer progression 30 PART II 32 Positive correlation between Sp1 level and survival rate in young women with lung cancer 32 Estrogen inhibits Sp1 to enhance lung cancer malignancy 34 Sp1 inhibits CD44 expression in lung cancer cells 35 Sp1 induces miRNA expression to silence CD44 expression 36 CONCLUSION 39 DISCUSSION 40 REFERENCES 49 FIGURES 79 FIGURE 1. ESTROGEN INHIBITED P53 EXPRESSION AND PROMOTE LUNG CANCER PROGRESSION 82 FIGURE 2. P53 IS INVOLVED IN GENDER-DEPENDENT LUNG CANCER PROGRESSION. 85 FIGURE 3. E2 INDUCED DNMT1 EXPRESSION TO INHIBIT P53 EXPRESSION THROUGH INCREASE IN DNA METHYLATION IN LUNG CANCER. 88 FIGURE 4. P53 REGULATES THE TAM AROUND LUNG CANCER CELLS. 91 FIGURE 5. FIG. 5. THE P53-MEDIATED CONDITIONAL MEDIUM IS INVOLVED IN THE MIGRATION ABILITIES OF MACROPHAGES AND LUNG CANCER CELLS. 94 FIGURE 6. E2-INHIBITED P53 REGULATES CCL5 AND GDF15 TO MODULATE MACROPHAGE DIFFERENTIATION. 96 FIGURE 7. THE RELATIONSHIP AMONG THE PROTEIN LEVELS OF YM1, CCL5 AND GDF-15 AND SEX-DEPENDENT LUNG CANCER IN EGFRL858R MICE. 98 FIGURE 8. CLINICAL RELEVANCE AMONG THE LEVELS OF P53, DNMT1, GDF15 AND CCL5 IN LUNG CANCER COHORTS. 100 FIGURE 9. THE SP1 LEVEL IS DECREASED IN WOMEN WITH LUNG CANCER AND ASSOCIATED WITH A POOR PROGNOSIS. 103 FIGURE 10. SEX DEPENDENCE OF LUNG CANCER PROGRESSION IN A GENDER-DEPENDENT MANNER. 105 FIGURE 11. ESTRADIOL DECREASES SP1 PROTEIN STABILITY IN LUNG CANCER CELLS. 107 FIGURE 12. ESTRADIOL-MEDIATED INHIBITION OF SP1 INCREASES LUNG CANCER CELL PROGRESSION. 109 FIGURE 13. SP1 INHIBITS CD44 EXPRESSION IN LUNG CANCER. 111 FIGURE 14. GLOBAL GENE REPERTOIRE OF MIRNAS DIRECTLY POSITIVELY REGULATED BY SP1 DIRECTLY. 113 FIG. 15. THE PROMOTER ACTIVITIES OF CD44, SOX2 AND ALDH1. 114 FIGURE 16. SP1 POSITIVELY REGULATES MIRNAS TO SILENCE EMT-RELATED GENE EXPRESSION. 116 FIGURE 17. THE LEVELS OF THE EMT-RELATED MARKERS 118 FIGURE 18. THE RELATIONSHIP BETWEEN THE SURVIVAL RATE AND THE LEVELS OF VARIOUS PROTEINS 120 FIGURE 19. CLINICAL RELEVANCE. SAMPLES OBTAINED FROM LUNG CANCER PATIENTS WERE USED TO STUDY THE MRNA AND PROTEIN LEVELS OF SP1 122 FIGURE 20. A MODEL FOR THE ESTROGEN-MEDIATED P53 AND SP1 IN WOMEN LUNG CANCER PATIENTS CAUSED POOR PROGNOSIS. 123 SUPPLEMENTARY AND APPENDIX TABLE 124 SUPPLEMENTARY FIG. 1. SP1-REGULATED MIRNAS ARE RELATED TO THE INDICATED IMPORTANT PROTEINS. 124 APPENDIX TABLE 1. THE HISTORIES OF 331 LUNG CANCER PATIENTS ARE LISTED HERE. 125 APPENDIX TABLE 2. SUMMARY OF CHIP-SEQ SHORT READS. 125 APPENDIX TABLE 3. GENOMIC DISTRIBUTION OF SP1-BOUND REGIONS. 126 APPENDIX TABLE 4. GENE BIOTYPE OF SP1-REGULATED GENES. 126 APPENDIX TABLE 5. POSITIVE REGULATION OF MIRNA EXPRESSION BY SP1. 127 RELATED PAPER PUBLICATION 128

    Adela, R., & Banerjee, S. K. (2015). GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J Diabetes Res, 2015, 490842. https://doi.org/10.1155/2015/490842
    Albrechtsen, N., Dornreiter, I., Grosse, F., Kim, E., Wiesmüller, L., & Deppert, W. (1999, 1999/12/01). Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene, 18(53), 7706-7717. https://doi.org/10.1038/sj.onc.1202952
    Aras, S., & Zaidi, M. R. (2017). TAMeless traitors: macrophages in cancer progression and metastasis. British journal of cancer, 117(11), 1583-1591. https://doi.org/10.1038/bjc.2017.356
    Arenas, I. A., Armstrong, S. J., Xu, Y., & Davidge, S. T. (2006, Sep). Tumor necrosis factor-alpha and vascular angiotensin II in estrogen-deficient rats. Hypertension, 48(3), 497-503. https://doi.org/10.1161/01.HYP.0000235865.03528.f1
    Aryan, L., Younessi, D., Zargari, M., Banerjee, S., Agopian, J., Rahman, S., Borna, R., Ruffenach, G., Umar, S., & Eghbali, M. (2020). The Role of Estrogen Receptors in Cardiovascular Disease. International journal of molecular sciences, 21(12), 4314. https://doi.org/10.3390/ijms21124314
    Bell, D. W., Gore, I., Okimoto, R. A., Godin-Heymann, N., Sordella, R., Mulloy, R., Sharma, S. V., Brannigan, B. W., Mohapatra, G., Settleman, J., & Haber, D. A. (2005, Dec). Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet, 37(12), 1315-1316. https://doi.org/10.1038/ng1671
    Berrozpe, G., Schaeffer, J., Peinado, M. A., Real, F. X., & Perucho, M. (1994, Jul 15). Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer, 58(2), 185-191. https://doi.org/10.1002/ijc.2910580207
    Bikfalvi, A., Klein, S., Pintucci, G., & Rifkin, D. B. (1997, Feb). Biological roles of fibroblast growth factor-2. Endocr Rev, 18(1), 26-45. https://doi.org/10.1210/edrv.18.1.0292
    Björnström, L., & Sjöberg, M. (2005). Mechanisms of Estrogen Receptor Signaling: Convergence of Genomic and Nongenomic Actions on Target Genes. Molecular Endocrinology, 19(4), 833-842. https://doi.org/10.1210/me.2004-0486
    Blagih, J., Buck, M. D., & Vousden, K. H. (2020). p53, cancer and the immune response. Journal of Cell Science, 133(5), jcs237453. https://doi.org/10.1242/jcs.237453
    Brustugun, O. T., Grønberg, B. H., Fjellbirkeland, L., Helbekkmo, N., Aanerud, M., Grimsrud, T. K., Helland, Å., Møller, B., Nilssen, Y., Strand, T. E., & Solberg, S. K. (2018, Aug). Substantial nation-wide improvement in lung cancer relative survival in Norway from 2000 to 2016. Lung Cancer, 122, 138-145. https://doi.org/10.1016/j.lungcan.2018.06.003
    Chang, W. C., & Hung, J. J. (2012, Nov 14). Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biomed Sci, 19, 94. https://doi.org/10.1186/1423-0127-19-94
    Chang, Y.-J., Huang, J.-Y., Lin, C.-H., & Wang, B.-Y. (2021). Survival and Treatment of Lung Cancer in Taiwan between 2010 and 2016. Journal of clinical medicine, 10(20), 4675. https://doi.org/10.3390/jcm10204675
    Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., Bäsecke, J., Stivala, F., Donia, M., Fagone, P., Malaponte, G., Mazzarino, M. C., Nicoletti, F., Libra, M., Maksimovic-Ivanic, D., Mijatovic, S., Montalto, G., Cervello, M., Laidler, P., Milella, M., Tafuri, A., Bonati, A., Evangelisti, C., Cocco, L., Martelli, A. M., & McCubrey, J. A. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135-164. https://doi.org/10.18632/oncotarget.240
    Cheng, J. C., Auersperg, N., & Leung, P. C. K. (2011, 2011/09/01). Inhibition of p53 represses E-cadherin expression by increasing DNA methyltransferase-1 and promoter methylation in serous borderline ovarian tumor cells. Oncogene, 30(37), 3930-3942. https://doi.org/10.1038/onc.2011.117
    Chuang, C. Y., Chang, H., Lin, P., Sun, S. J., Chen, P. H., Lin, Y. Y., Sheu, G. T., Ko, J. L., Hsu, S. L., & Chang, J. T. (2012, Jan 15). Up-regulation of osteopontin expression by aryl hydrocarbon receptor via both ligand-dependent and ligand-independent pathways in lung cancer. Gene, 492(1), 262-269. https://doi.org/10.1016/j.gene.2011.10.019
    Chuang, J. Y., Wang, Y. T., Yeh, S. H., Liu, Y. W., Chang, W. C., & Hung, J. J. (2008, Mar). Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Mol Biol Cell, 19(3), 1139-1151. https://doi.org/10.1091/mbc.e07-09-0881
    Chung, J. O., Park, S.-Y., Cho, D. H., Chung, D. J., & Chung, M. Y. (2020, 2020/11/25). Relationship between plasma growth differentiation factor-15 levels and diabetic retinopathy in individuals with type 2 diabetes. Scientific Reports, 10(1), 20568. https://doi.org/10.1038/s41598-020-77584-z
    Couraud, S., Zalcman, G., Milleron, B., Morin, F., & Souquet, P. J. (2012, Jun). Lung cancer in never smokers--a review. Eur J Cancer, 48(9), 1299-1311. https://doi.org/10.1016/j.ejca.2012.03.007
    Cui, J., Shen, Y., & Li, R. (2013). Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends in molecular medicine, 19(3), 197-209. https://doi.org/10.1016/j.molmed.2012.12.007
    da Silva, J. S., Montagnoli, T. L., Rocha, B. S., Tacco, M. L. C. A., Marinho, S. C. P., & Zapata-Sudo, G. (2021). Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. International journal of molecular sciences, 22(2), 525. https://doi.org/10.3390/ijms22020525
    deGraffenried, L. A., Hilsenbeck, S. G., & Fuqua, S. A. (2002, Sep). Sp1 is essential for estrogen receptor alpha gene transcription. J Steroid Biochem Mol Biol, 82(1), 7-18. https://doi.org/10.1016/s0960-0760(02)00151-6
    Dela Cruz, C. S., Tanoue, L. T., & Matthay, R. A. (2011). Lung cancer: epidemiology, etiology, and prevention. Clinics in chest medicine, 32(4), 605-644. https://doi.org/10.1016/j.ccm.2011.09.001
    Dey, P., Jonsson, P., Hartman, J., Williams, C., Ström, A., & Gustafsson, J. (2012, Dec). Estrogen receptors β1 and β2 have opposing roles in regulating proliferation and bone metastasis genes in the prostate cancer cell line PC3. Mol Endocrinol, 26(12), 1991-2003. https://doi.org/10.1210/me.2012.1227
    Dhar, C. (2021, Apr 25). Utilizing Publicly Available Cancer Clinicogenomic Data on CBioPortal to Compare Epidermal Growth Factor Receptor Mutant and Wildtype Non-Small Cell Lung Cancer. Cureus, 13(4), e14683. https://doi.org/10.7759/cureus.14683
    Dong, B., Wu, C., Huang, L., & Qi, Y. (2021). Macrophage-Related SPP1 as a Potential Biomarker for Early Lymph Node Metastasis in Lung Adenocarcinoma. Front Cell Dev Biol, 9, 739358. https://doi.org/10.3389/fcell.2021.739358
    Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules (Basel, Switzerland), 21(7), 965. https://doi.org/10.3390/molecules21070965
    Ehrlich, M. (2019, 2019/12/02). DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics, 14(12), 1141-1163. https://doi.org/10.1080/15592294.2019.1638701
    Ehrlich, M., Gama-Sosa, M. A., Huang, L. H., Midgett, R. M., Kuo, K. C., McCune, R. A., & Gehrke, C. (1982, Apr 24). Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res, 10(8), 2709-2721. https://doi.org/10.1093/nar/10.8.2709
    El Osta, B., Behera, M., Kim, S., Berry, L. D., Sica, G., Pillai, R. N., Owonikoko, T. K., Kris, M. G., Johnson, B. E., Kwiatkowski, D. J., Sholl, L. M., Aisner, D. L., Bunn, P. A., Khuri, F. R., & Ramalingam, S. S. (2019, May). Characteristics and Outcomes of Patients With Metastatic KRAS-Mutant Lung Adenocarcinomas: The Lung Cancer Mutation Consortium Experience. J Thorac Oncol, 14(5), 876-889. https://doi.org/10.1016/j.jtho.2019.01.020
    Emmerson, P. J., Wang, F., Du, Y., Liu, Q., Pickard, R. T., Gonciarz, M. D., Coskun, T., Hamang, M. J., Sindelar, D. K., Ballman, K. K., Foltz, L. A., Muppidi, A., Alsina-Fernandez, J., Barnard, G. C., Tang, J. X., Liu, X., Mao, X., Siegel, R., Sloan, J. H., Mitchell, P. J., Zhang, B. B., Gimeno, R. E., Shan, B., & Wu, X. (2017, Oct). The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med, 23(10), 1215-1219. https://doi.org/10.1038/nm.4393
    Esteller, M. (2005). Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol, 45, 629-656. https://doi.org/10.1146/annurev.pharmtox.45.120403.095832
    Estève, P.-O., Chin, H. G., & Pradhan, S. (2005). Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1000-1005. https://doi.org/10.1073/pnas.0407729102
    Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and function. European Heart Journal, 33(7), 829-837. https://doi.org/10.1093/eurheartj/ehr304
    Förstermann, U., Xia, N., & Li, H. (2017, 2017/02/17). Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circulation Research, 120(4), 713-735. https://doi.org/10.1161/CIRCRESAHA.116.309326
    Fedarko, N. S., Jain, A., Karadag, A., Van Eman, M. R., & Fisher, L. W. (2001, Dec). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res, 7(12), 4060-4066.
    Fidler-Benaoudia, M. M., Torre, L. A., Bray, F., Ferlay, J., & Jemal, A. (2020, Aug 1). Lung cancer incidence in young women vs. young men: A systematic analysis in 40 countries. Int J Cancer, 147(3), 811-819. https://doi.org/10.1002/ijc.32809
    Fu, D., Shi, Y., Liu, J. B., Wu, T. M., Jia, C. Y., Yang, H. Q., Zhang, D. D., Yang, X. L., Wang, H. M., & Ma, Y. S. (2020, Sep 4). Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. Mol Ther Nucleic Acids, 21, 712-724. https://doi.org/10.1016/j.omtn.2020.07.005
    Fuentes, N., & Silveyra, P. (2019). Estrogen receptor signaling mechanisms. Advances in protein chemistry and structural biology, 116, 135-170. https://doi.org/10.1016/bs.apcsb.2019.01.001
    Göthlin Eremo, A., Lagergren, K., Othman, L., Montgomery, S., Andersson, G., & Tina, E. (2020, 2020/01/29). Evaluation of SPP1/osteopontin expression as predictor of recurrence in tamoxifen treated breast cancer. Scientific Reports, 10(1), 1451. https://doi.org/10.1038/s41598-020-58323-w
    Ganti, A. K., Klein, A. B., Cotarla, I., Seal, B., & Chou, E. (2021, Dec 1). Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients With Non-Small Cell Lung Cancer in the US. JAMA Oncol, 7(12), 1824-1832. https://doi.org/10.1001/jamaoncol.2021.4932
    Gao, X., Cai, Y., Wang, Z., He, W., Cao, S., Xu, R., & Chen, H. (2019, Sep 11). Estrogen receptors promote NSCLC progression by modulating the membrane receptor signaling network: a systems biology perspective. J Transl Med, 17(1), 308. https://doi.org/10.1186/s12967-019-2056-3
    Gealy, R., Zhang, L., Siegfried, J. M., Luketich, J. D., & Keohavong, P. (1999). Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 8 4 Pt 1, 297-302.
    Georgia, S., Kanji, M., & Bhushan, A. (2013, Feb 15). DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev, 27(4), 372-377. https://doi.org/10.1101/gad.207001.112
    Ghaffari, S., Naderi Nabi, F., Sugiyama, M. G., & Lee, W. L. (2018, 2018/10/01). Estrogen Inhibits LDL (Low-Density Lipoprotein) Transcytosis by Human Coronary Artery Endothelial Cells via GPER (G-Protein–Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1). Arteriosclerosis, Thrombosis, and Vascular Biology, 38(10), 2283-2294. https://doi.org/10.1161/ATVBAHA.118.310792
    Gourd, E. (2018, Jul). Lung cancer incidence higher in US women than men. Lancet Oncol, 19(7), e339. https://doi.org/10.1016/s1470-2045(18)30422-4
    Guo, H., Zhao, X., Li, H., Liu, K., Jiang, H., Zeng, X., Chang, J., Ma, C., Fu, Z., Lv, X., Wang, T., Guo, H., Liu, K., Su, H., & Li, Y. (2021, Aug 1). GDF15 Promotes Cardiac Fibrosis and Proliferation of Cardiac Fibroblasts via the MAPK/ERK1/2 Pathway after Irradiation in Rats. Radiat Res, 196(2), 183-191. https://doi.org/10.1667/rade-20-00206.1
    Hammoud, Z., Tan, B., Badve, S., & Bigsby, R. M. (2008, Jun). Estrogen promotes tumor progression in a genetically defined mouse model of lung adenocarcinoma. Endocr Relat Cancer, 15(2), 475-483. https://doi.org/10.1677/erc-08-0002
    He, Y., Sun, M. M., Zhang, G. G., Yang, J., Chen, K. S., Xu, W. W., & Li, B. (2021, 2021/12/16). Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 6(1), 425. https://doi.org/10.1038/s41392-021-00828-5
    Hernández Borrero, L. J., & El-Deiry, W. S. (2021, 2021/08/01/). Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1876(1), 188556. https://doi.org/https://doi.org/10.1016/j.bbcan.2021.188556
    Hiramitsu, S., Ishikawa, T., Lee, W. R., Khan, T., Crumbley, C., Khwaja, N., Zamanian, F., Asghari, A., Sen, M., Zhang, Y., Hawse, J. R., Minna, J. D., & Umetani, M. (2018). Estrogen Receptor Beta-Mediated Modulation of Lung Cancer Cell Proliferation by 27-Hydroxycholesterol. Front Endocrinol (Lausanne), 9, 470. https://doi.org/10.3389/fendo.2018.00470
    Hohmann, N., Xia, N., Steinkamp-Fenske, K., Förstermann, U., & Li, H. (2016). Estrogen Receptor Signaling and the PI3K/Akt Pathway Are Involved in Betulinic Acid-Induced eNOS Activation. Molecules (Basel, Switzerland), 21(8), 973. https://doi.org/10.3390/molecules21080973
    Hsu, J. Y., Crawley, S., Chen, M., Ayupova, D. A., Lindhout, D. A., Higbee, J., Kutach, A., Joo, W., Gao, Z., Fu, D., To, C., Mondal, K., Li, B., Kekatpure, A., Wang, M., Laird, T., Horner, G., Chan, J., McEntee, M., Lopez, M., Lakshminarasimhan, D., White, A., Wang, S. P., Yao, J., Yie, J., Matern, H., Solloway, M., Haldankar, R., Parsons, T., Tang, J., Shen, W. D., Alice Chen, Y., Tian, H., & Allan, B. B. (2017, Oct 12). Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature, 550(7675), 255-259. https://doi.org/10.1038/nature24042
    Hsu, L. H., Liu, K. J., Tsai, M. F., Wu, C. R., Feng, A. C., Chu, N. M., & Kao, S. H. (2015, Jan). Estrogen adversely affects the prognosis of patients with lung adenocarcinoma. Cancer Sci, 106(1), 51-59. https://doi.org/10.1111/cas.12558
    Hsu, T. I., Wang, M. C., Chen, S. Y., Yeh, Y. M., Su, W. C., Chang, W. C., & Hung, J. J. (2012a, 2012/08/01). Sp1 expression regulates lung tumor progression. Oncogene, 31(35), 3973-3988. https://doi.org/10.1038/onc.2011.568
    Hsu, T. I., Wang, M. C., Chen, S. Y., Yeh, Y. M., Su, W. C., Chang, W. C., & Hung, J. J. (2012b, Aug 30). Sp1 expression regulates lung tumor progression. Oncogene, 31(35), 3973-3988. https://doi.org/10.1038/onc.2011.568
    Hua, H., Zhang, H., Kong, Q., & Jiang, Y. (2018, 2018/09/19). Mechanisms for estrogen receptor expression in human cancer. Experimental Hematology & Oncology, 7(1), 24. https://doi.org/10.1186/s40164-018-0116-7
    Huang, C. Y., Fong, Y. C., Lee, C. Y., Chen, M. Y., Tsai, H. C., Hsu, H. C., & Tang, C. H. (2009, Mar 1). CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 77(5), 794-803. https://doi.org/10.1016/j.bcp.2008.11.014
    Huang, X., Wang, L., Liu, W., & Li, F. (2019, Mar). MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol Lett, 17(3), 3425-3431. https://doi.org/10.3892/ol.2019.9954
    Hung, C.-Y., Wang, Y.-C., Chuang, J.-Y., Young, M.-J., Liaw, H., Chang, W.-C., & Hung, J.-J. (2017, 2017/08/22). Nm23-H1-stabilized hnRNPA2/B1 promotes internal ribosomal entry site (IRES)-mediated translation of Sp1 in the lung cancer progression. Scientific Reports, 7(1), 9166. https://doi.org/10.1038/s41598-017-09558-7
    Ito, T., Kubiura-Ichimaru, M., Murakami, Y., Bogutz, A. B., Lefebvre, L., Suetake, I., Tajima, S., & Tada, M. (2022). DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLoS One, 17(1), e0262277. https://doi.org/10.1371/journal.pone.0262277
    Jang, D.-I., Lee, A. H., Shin, H.-Y., Song, H.-R., Park, J.-H., Kang, T.-B., Lee, S.-R., & Yang, S.-H. (2021). The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International journal of molecular sciences, 22(5), 2719. https://doi.org/10.3390/ijms22052719
    Jemal, A., Miller, K. D., Ma, J., Siegel, R. L., Fedewa, S. A., Islami, F., Devesa, S. S., & Thun, M. J. (2018, 2018/05/24). Higher Lung Cancer Incidence in Young Women Than Young Men in the United States. New England Journal of Medicine, 378(21), 1999-2009. https://doi.org/10.1056/NEJMoa1715907
    Jemal, A., Miller, K. D., Ma, J., Siegel, R. L., Fedewa, S. A., Islami, F., Devesa, S. S., & Thun, M. J. (2018, May 24). Higher Lung Cancer Incidence in Young Women Than Young Men in the United States. N Engl J Med, 378(21), 1999-2009. https://doi.org/10.1056/NEJMoa1715907
    Jeziorska, D. M., Murray, R. J. S., De Gobbi, M., Gaentzsch, R., Garrick, D., Ayyub, H., Chen, T., Li, E., Telenius, J., Lynch, M., Graham, B., Smith, A. J. H., Lund, J. N., Hughes, J. R., Higgs, D. R., & Tufarelli, C. (2017). DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proceedings of the National Academy of Sciences, 114(36), E7526. https://doi.org/10.1073/pnas.1703087114
    Jin, H., Liang, G., Yang, L., Liu, L., Wang, B., & Yan, F. (2021, Mar). SP1-induced AFAP1-AS1 contributes to proliferation and invasion by regulating miR-497-5p/CELF1 pathway in nasopharyngeal carcinoma. Hum Cell, 34(2), 491-501. https://doi.org/10.1007/s13577-020-00475-y
    Kadonaga, J. T., Courey, A. J., Ladika, J., & Tjian, R. (1988, Dec 16). Distinct regions of Sp1 modulate DNA binding and transcriptional activation. Science, 242(4885), 1566-1570. https://doi.org/10.1126/science.3059495
    Kameyoshi, Y., Dörschner, A., Mallet, A. I., Christophers, E., & Schröder, J. M. (1992, Aug 1). Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med, 176(2), 587-592. https://doi.org/10.1084/jem.176.2.587
    Kandi, V., & Vadakedath, S. (2015). Effect of DNA Methylation in Various Diseases and the Probable Protective Role of Nutrition: A Mini-Review. Cureus, 7(8), e309-e309. https://doi.org/10.7759/cureus.309
    Kang, J. H., Kim, S. J., Noh, D. Y., Park, I. A., Choe, K. J., Yoo, O. J., & Kang, H. S. (2001, Apr). Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest, 81(4), 573-579. https://doi.org/10.1038/labinvest.3780266
    Kastenhuber, E. R., & Lowe, S. W. (2017, Sep 7). Putting p53 in Context. Cell, 170(6), 1062-1078. https://doi.org/10.1016/j.cell.2017.08.028
    Kempf, T., Guba-Quint, A., Torgerson, J., Magnone, M. C., Haefliger, C., Bobadilla, M., & Wollert, K. C. (2012, 01 Nov. 2012). Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial. European Journal of Endocrinology, 167(5), 671-678. https://doi.org/10.1530/EJE-12-0466
    Kim, J., Lee, J., Kim, U., Park, J.-K., & Um, H.-D. (2021). Slug promotes p53 and p21 protein degradation by inducing Mdm2 expression in HCT116 colon cancer cells. Oncology letters, 22(3), 681-681. https://doi.org/10.3892/ol.2021.12942
    Kim, M., Long, T. I., Arakawa, K., Wang, R., Yu, M. C., & Laird, P. W. (2010, Mar 15). DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 5(3), e9692. https://doi.org/10.1371/journal.pone.0009692
    Kolesnikoff, N., Attema, J. L., Roslan, S., Bert, A. G., Schwarz, Q. P., Gregory, P. A., & Goodall, G. J. (2014, Apr 18). Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem, 289(16), 11194-11205. https://doi.org/10.1074/jbc.M113.529172
    Kong, L. M., Liao, C. G., Zhang, Y., Xu, J., Li, Y., Huang, W., Zhang, Y., Bian, H., & Chen, Z. N. (2014, Jul 15). A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res, 74(14), 3764-3778. https://doi.org/10.1158/0008-5472.Can-13-3555
    Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004, Dec 15). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res, 64(24), 8919-8923. https://doi.org/10.1158/0008-5472.Can-04-2818
    Koutras, A., Giannopoulou, E., Kritikou, I., Antonacopoulou, A., Evans, T. R. J., Papavassiliou, A. G., & Kalofonos, H. (2009, 2009/11/24). Antiproliferative effect of exemestane in lung cancer cells. Molecular Cancer, 8(1), 109. https://doi.org/10.1186/1476-4598-8-109
    Lakin, N. D., & Jackson, S. P. (1999, 1999/12/01). Regulation of p53 in response to DNA damage. Oncogene, 18(53), 7644-7655. https://doi.org/10.1038/sj.onc.1203015
    Larue, L., & Bellacosa, A. (2005, 2005/11/01). Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24(50), 7443-7454. https://doi.org/10.1038/sj.onc.1209091
    Lee, Y.-J., Seo, H. W., Baek, J.-H., Lim, S. H., Hwang, S.-G., & Kim, E. H. (2020, 2020/07/23). Gene expression profiling of glioblastoma cell lines depending on TP53 status after tumor-treating fields (TTFields) treatment. Scientific Reports, 10(1), 12272. https://doi.org/10.1038/s41598-020-68473-6
    Li, A., Zhao, F., Zhao, Y., Liu, H., & Wang, Z. (2021, Jun 15). ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway. Life Sci, 275, 119356. https://doi.org/10.1016/j.lfs.2021.119356
    Li, L., & Davie, J. (2010, 01/01). The role of Sp1 and Sp3 in normal and cancer cell biology. Ann. Anat., 192, 275-283.
    Liguori, N. R., Sanchez Sevilla Uruchurtu, A., Zhang, L., Abbas, A. E., Lee, Y. S., Zhou, L., Azzoli, C. G., & El-Deiry, W. S. (2022). Preclinical studies with ONC201/TIC10 and lurbinectedin as a novel combination therapy in small cell lung cancer (SCLC). American journal of cancer research, 12(2), 729-743.
    Lim, L. J., Wong, S. Y. S., Huang, F., Lim, S., Chong, S. S., Ooi, L. L., Kon, O. L., & Lee, C. G. (2019, Oct 15). Roles and Regulation of Long Noncoding RNAs in Hepatocellular Carcinoma. Cancer Res, 79(20), 5131-5139. https://doi.org/10.1158/0008-5472.CAN-19-0255
    Liu, S., Hu, C., Li, M., An, J., Zhou, W., Guo, J., & Xiao, Y. (2022, 2022/01/21). Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death & Disease, 13(1), 70. https://doi.org/10.1038/s41419-022-04514-4
    Lombardi, A. P. G., Cavalheiro, R. P., Porto, C. S., & Vicente, C. M. (2021). Estrogen Receptor Signaling Pathways Involved in Invasion and Colony Formation of Androgen-Independent Prostate Cancer Cells PC-3. International journal of molecular sciences, 22(3), 1153. https://doi.org/10.3390/ijms22031153
    Lu, X., He, X., Su, J., Wang, J., Liu, X., Xu, K., De, W., Zhang, E., Guo, R., & Shi, Y. E. (2018, Sep 7). EZH2-Mediated Epigenetic Suppression of GDF15 Predicts a Poor Prognosis and Regulates Cell Proliferation in Non-Small-Cell Lung Cancer. Mol Ther Nucleic Acids, 12, 309-318. https://doi.org/10.1016/j.omtn.2018.05.016
    Mah, V., Marquez, D., Alavi, M., Maresh, E. L., Zhang, L., Yoon, N., Horvath, S., Bagryanova, L., Fishbein, M. C., Chia, D., Pietras, R., & Goodglick, L. (2011, Nov). Expression levels of estrogen receptor beta in conjunction with aromatase predict survival in non-small cell lung cancer. Lung Cancer, 74(2), 318-325. https://doi.org/10.1016/j.lungcan.2011.03.009
    Marino, M., Galluzzo, P., & Ascenzi, P. (2006). Estrogen signaling multiple pathways to impact gene transcription. Current genomics, 7(8), 497-508. https://doi.org/10.2174/138920206779315737
    Matsui, T., Tanizawa, Y., & Enatsu, S. (2021, May). [Exon 19 Deletion and Exon 21 L858R Point Mutation in EGFR Mutation‒Positive Non‒Small Cell Lung Cancer]. Gan To Kagaku Ryoho, 48(5), 673-676.
    Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., Urbauer, D., Pennacchio, L. A., Cheng, J.-F., Nick, A. M., Deavers, M. T., Mourad-Zeidan, A., Wang, H., Mueller, P., Lenburg, M. E., Gray, J. W., Mok, S., Birrer, M. J., Lopez-Berestein, G., Coleman, R. L., Bar-Eli, M., & Sood, A. K. (2008, 2008/12/18). Dicer, Drosha, and Outcomes in Patients with Ovarian Cancer. New England Journal of Medicine, 359(25), 2641-2650. https://doi.org/10.1056/NEJMoa0803785
    Midha, A., Dearden, S., & McCormack, R. (2015). EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). American journal of cancer research, 5(9), 2892-2911. https://pubmed.ncbi.nlm.nih.gov/26609494
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633915/
    Min, K. W., Liggett, J. L., Silva, G., Wu, W. W., Wang, R., Shen, R. F., Eling, T. E., & Baek, S. J. (2016, Jan 21). NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene, 35(3), 377-388. https://doi.org/10.1038/onc.2015.95
    Moore, L. D., Le, T., & Fan, G. (2013, 2013/01/01). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23-38. https://doi.org/10.1038/npp.2012.112
    Moreau, K. L., Deane, K. D., Meditz, A. L., & Kohrt, W. M. (2013). Tumor necrosis factor-α inhibition improves endothelial function and decreases arterial stiffness in estrogen-deficient postmenopausal women. Atherosclerosis, 230(2), 390-396. https://doi.org/10.1016/j.atherosclerosis.2013.07.057
    Mullican, S. E., Lin-Schmidt, X., Chin, C. N., Chavez, J. A., Furman, J. L., Armstrong, A. A., Beck, S. C., South, V. J., Dinh, T. Q., Cash-Mason, T. D., Cavanaugh, C. R., Nelson, S., Huang, C., Hunter, M. J., & Rangwala, S. M. (2017, Oct). GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med, 23(10), 1150-1157. https://doi.org/10.1038/nm.4392
    Murooka, T. T., Rahbar, R., Platanias, L. C., & Fish, E. N. (2008, May 15). CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood, 111(10), 4892-4901. https://doi.org/10.1182/blood-2007-11-125039
    Musumeci, M., Coppola, V., Addario, A., Patrizii, M., Maugeri-Saccà, M., Memeo, L., Colarossi, C., Francescangeli, F., Biffoni, M., Collura, D., Giacobbe, A., D'Urso, L., Falchi, M., Venneri, M. A., Muto, G., De Maria, R., & Bonci, D. (2011, Oct 13). Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 30(41), 4231-4242. https://doi.org/10.1038/onc.2011.140
    Nabilsi, N. H., Broaddus, R. R., & Loose, D. S. (2009, May 14). DNA methylation inhibits p53-mediated survivin repression. Oncogene, 28(19), 2046-2050. https://doi.org/10.1038/onc.2009.62
    Nose, N., Sugio, K., Oyama, T., Nozoe, T., Uramoto, H., Iwata, T., Onitsuka, T., & Yasumoto, K. (2009, Jan 20). Association between estrogen receptor-beta expression and epidermal growth factor receptor mutation in the postoperative prognosis of adenocarcinoma of the lung. J Clin Oncol, 27(3), 411-417. https://doi.org/10.1200/jco.2008.18.3251
    Nose, N., Sugio, K., Oyama, T., Nozoe, T., Uramoto, H., Iwata, T., Onitsuka, T., & Yasumoto, K. (2009, 2009/01/20). Association Between Estrogen Receptor-β Expression and Epidermal Growth Factor Receptor Mutation in the Postoperative Prognosis of Adenocarcinoma of the Lung. Journal of Clinical Oncology, 27(3), 411-417. https://doi.org/10.1200/JCO.2008.18.3251
    O'Keeffe, L. M., Taylor, G., Huxley, R. R., Mitchell, P., Woodward, M., & Peters, S. A. E. (2018, Oct 3). Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open, 8(10), e021611. https://doi.org/10.1136/bmjopen-2018-021611
    Olivo-Marston, S. E., Mechanic, L. E., Mollerup, S., Bowman, E. D., Remaley, A. T., Forman, M. R., Skaug, V., Zheng, Y. L., Haugen, A., & Harris, C. C. (2010, Oct). Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women. Carcinogenesis, 31(10), 1778-1786. https://doi.org/10.1093/carcin/bgq156
    Otmani, K., & Lewalle, P. (2021). Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications [10.3389/fonc.2021.708765]. Frontiers in Oncology, 11, 4208. https://www.frontiersin.org/article/10.3389/fonc.2021.708765
    Oyama, T., Uramoto, H., Kagawa, N., Yoshimatsu, T., Osaki, T., Nakanishi, R., Nagaya, H., Kaneko, K., Muto, M., Kawamoto, T., Tanaka, F., & Gotoh, A. (2012, Jun 1). Cytochrome P450 in non-small cell lung cancer related to exogenous chemical metabolism. Front Biosci (Schol Ed), 4, 1539-1546. https://doi.org/10.2741/s350
    Park, B., Kim, Y., Lee, J., Lee, N., & Jang, S. H. (2020). Sex Difference and Smoking Effect of Lung Cancer Incidence in Asian Population. Cancers, 13(1), 113. https://doi.org/10.3390/cancers13010113
    Patel, S., Alvarez-Guaita, A., Melvin, A., Rimmington, D., Dattilo, A., Miedzybrodzka, E. L., Cimino, I., Maurin, A. C., Roberts, G. P., Meek, C. L., Virtue, S., Sparks, L. M., Parsons, S. A., Redman, L. M., Bray, G. A., Liou, A. P., Woods, R. M., Parry, S. A., Jeppesen, P. B., Kolnes, A. J., Harding, H. P., Ron, D., Vidal-Puig, A., Reimann, F., Gribble, F. M., Hulston, C. J., Farooqi, I. S., Fafournoux, P., Smith, S. R., Jensen, J., Breen, D., Wu, Z., Zhang, B. B., Coll, A. P., Savage, D. B., & O'Rahilly, S. (2019, Mar 5). GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab, 29(3), 707-718.e708. https://doi.org/10.1016/j.cmet.2018.12.016
    Paulsen, M., & Ferguson-Smith, A. C. (2001, Sep). DNA methylation in genomic imprinting, development, and disease. J Pathol, 195(1), 97-110. https://doi.org/10.1002/path.890
    Petz, L. N., & Nardulli, A. M. (2000, Jul). Sp1 binding sites and an estrogen response element half-site are involved in regulation of the human progesterone receptor A promoter. Mol Endocrinol, 14(7), 972-985. https://doi.org/10.1210/mend.14.7.0493
    Porter, W., Saville, B., Hoivik, D., & Safe, S. (1997, Oct). Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol, 11(11), 1569-1580. https://doi.org/10.1210/mend.11.11.9916
    Probst-Hensch, N. M., Steiner, J. H., Schraml, P., Varga, Z., Zürrer-Härdi, U., Storz, M., Korol, D., Fehr, M. K., Fink, D., Pestalozzi, B. C., Lütolf, U. M., Theurillat, J. P., & Moch, H. (2010, Feb 1). IGFBP2 and IGFBP3 protein expressions in human breast cancer: association with hormonal factors and obesity. Clin Cancer Res, 16(3), 1025-1032. https://doi.org/10.1158/1078-0432.Ccr-09-0957
    Proost, P., De Meester, I., Schols, D., Struyf, S., Lambeir, A. M., Wuyts, A., Opdenakker, G., De Clercq, E., Scharpé, S., & Van Damme, J. (1998, Mar 27). Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection. J Biol Chem, 273(13), 7222-7227. https://doi.org/10.1074/jbc.273.13.7222
    Pu, F. F., Shi, D. Y., Chen, T., Liu, Y. X., Zhong, B. L., Zhang, Z. C., Liu, W. J., Wu, Q., Wang, B. C., Shao, Z. W., He, T. C., & Liu, J. X. (2021, Jan 11). SP1-induced long non-coding RNA SNHG6 facilitates the carcinogenesis of chondrosarcoma through inhibiting KLF6 by recruiting EZH2. Cell Death Dis, 12(1), 59. https://doi.org/10.1038/s41419-020-03352-6
    Qiu, Z., Ye, B., Wang, K., Zhou, P., Zhao, S., Li, W., & Tian, P. (2020, Jun 25). Unique Genetic Characteristics and Clinical Prognosis of Female Patients with Lung Cancer Harboring RET Fusion Gene. Sci Rep, 10(1), 10387. https://doi.org/10.1038/s41598-020-66883-0
    Reita, D., Pabst, L., Pencreach, E., Guérin, E., Dano, L., Rimelen, V., Voegeli, A.-C., Vallat, L., Mascaux, C., & Beau-Faller, M. (2022). Direct Targeting KRAS Mutation in Non-Small Cell Lung Cancer: Focus on Resistance. Cancers, 14(5). https://doi.org/10.3390/cancers14051321
    Rekhtman, N., Paik, P. K., Arcila, M. E., Tafe, L. J., Oxnard, G. R., Moreira, A. L., Travis, W. D., Zakowski, M. F., Kris, M. G., & Ladanyi, M. (2012). Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clinical cancer research : an official journal of the American Association for Cancer Research, 18(4), 1167-1176. https://doi.org/10.1158/1078-0432.CCR-11-2109
    Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Translational oncology, 13(6), 100773-100773. https://doi.org/10.1016/j.tranon.2020.100773
    Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & cancer, 2(4), 466-474. https://doi.org/10.1177/1947601911408889
    Robert, M. F., Morin, S., Beaulieu, N., Gauthier, F., Chute, I. C., Barsalou, A., & MacLeod, A. R. (2003, Jan). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet, 33(1), 61-65. https://doi.org/10.1038/ng1068
    Rodriguez-Lara, V., & Avila-Costa, M. R. (2021, 2021-May-17). An Overview of Lung Cancer in Women and the Impact of Estrogen in Lung Carcinogenesis and Lung Cancer Treatment [Mini Review]. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.600121
    Root-Bernstein, R., Podufaly, A., & Dillon, P. F. (2014). Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro [10.3389/fendo.2014.00118]. Frontiers in Endocrinology, 5, 118. https://www.frontiersin.org/article/10.3389/fendo.2014.00118
    Rubin, J. B., Lagas, J. S., Broestl, L., Sponagel, J., Rockwell, N., Rhee, G., Rosen, S. F., Chen, S., Klein, R. S., Imoukhuede, P., & Luo, J. (2020, Apr 15). Sex differences in cancer mechanisms. Biol Sex Differ, 11(1), 17. https://doi.org/10.1186/s13293-020-00291-x
    Rupaimoole, R., Calin, G. A., Lopez-Berestein, G., & Sood, A. K. (2016). miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 6(3), 235. https://doi.org/10.1158/2159-8290.CD-15-0893
    Safe, S., & Kim, K. (2008, Nov). Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. Journal of molecular endocrinology, 41(5), 263-275. https://doi.org/10.1677/jme-08-0103
    Saito, S., Espinoza-Mercado, F., Liu, H., Sata, N., Cui, X., & Soukiasian, H. J. (2017, Jun 3). Current status of research and treatment for non-small cell lung cancer in never-smoking females. Cancer Biol Ther, 18(6), 359-368. https://doi.org/10.1080/15384047.2017.1323580
    Scala, G., Federico, A., Palumbo, D., Cocozza, S., & Greco, D. (2020, 2020/02/03). DNA sequence context as a marker of CpG methylation instability in normal and cancer tissues. Scientific Reports, 10(1), 1721. https://doi.org/10.1038/s41598-020-58331-w
    Scheffler, M., Ihle, M. A., Hein, R., Merkelbach-Bruse, S., Scheel, A. H., Siemanowski, J., Brägelmann, J., Kron, A., Abedpour, N., Ueckeroth, F., Schüller, M., Koleczko, S., Michels, S., Fassunke, J., Pasternack, H., Heydt, C., Serke, M., Fischer, R., Schulte, W., Gerigk, U., Nogova, L., Ko, Y. D., Abdulla, D. S. Y., Riedel, R., Kambartel, K. O., Lorenz, J., Sauerland, I., Randerath, W., Kaminsky, B., Hagmeyer, L., Grohé, C., Eisert, A., Frank, R., Gogl, L., Schaepers, C., Holzem, A., Hellmich, M., Thomas, R. K., Peifer, M., Sos, M. L., Büttner, R., & Wolf, J. (2019, Apr). K-ras Mutation Subtypes in NSCLC and Associated Co-occuring Mutations in Other Oncogenic Pathways. J Thorac Oncol, 14(4), 606-616. https://doi.org/10.1016/j.jtho.2018.12.013
    Schultz, J. R., Petz, L. N., & Nardulli, A. M. (2003, Mar 28). Estrogen receptor alpha and Sp1 regulate progesterone receptor gene expression. Mol Cell Endocrinol, 201(1-2), 165-175. https://doi.org/10.1016/s0303-7207(02)00415-x
    Segars, J. H., & Driggers, P. H. (2002, Oct). Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes. Trends Endocrinol Metab, 13(8), 349-354. https://doi.org/10.1016/s1043-2760(02)00633-1
    Shea, M., Costa, D. B., & Rangachari, D. (2016). Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Therapeutic advances in respiratory disease, 10(2), 113-129. https://doi.org/10.1177/1753465815617871
    Shi, D., Zhao, P., Cui, L., Li, H., Sun, L., Niu, J., & Chen, M. (2020, 2020/05/01). Inhibition of PI3K/AKT molecular pathway mediated by membrane estrogen receptor GPER accounts for cryptotanshinone induced antiproliferative effect on breast cancer SKBR-3 cells. BMC Pharmacology and Toxicology, 21(1), 32. https://doi.org/10.1186/s40360-020-00410-9
    Shi, Y., Norberg, E., & Vakifahmetoglu-Norberg, H. (2021, 2021-February-03). Mutant p53 as a Regulator and Target of Autophagy [Mini Review]. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.607149
    Siegel, D. A., Fedewa, S. A., Henley, S. J., Pollack, L. A., & Jemal, A. (2021). Proportion of Never Smokers Among Men and Women With Lung Cancer in 7 US States. JAMA Oncology, 7(2), 302-304. https://doi.org/10.1001/jamaoncol.2020.6362
    Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022, 2022/01/01). Cancer statistics, 2022 [https://doi.org/10.3322/caac.21708]. CA: A Cancer Journal for Clinicians, 72(1), 7-33. https://doi.org/https://doi.org/10.3322/caac.21708
    Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., Michael, M. D., & et al. (1994, Jun). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev, 15(3), 342-355. https://doi.org/10.1210/edrv-15-3-342
    Steelman, L. S., Chappell, W. H., Abrams, S. L., Kempf, R. C., Long, J., Laidler, P., Mijatovic, S., Maksimovic-Ivanic, D., Stivala, F., Mazzarino, M. C., Donia, M., Fagone, P., Malaponte, G., Nicoletti, F., Libra, M., Milella, M., Tafuri, A., Bonati, A., Bäsecke, J., Cocco, L., Evangelisti, C., Martelli, A. M., Montalto, G., Cervello, M., & McCubrey, J. A. (2011). Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 3(3), 192-222. https://doi.org/10.18632/aging.100296
    Strehlow, K., Rotter, S., Wassmann, S., Adam, O., Grohé, C., Laufs, K., Böhm, M., & Nickenig, G. (2003, Jul 25). Modulation of antioxidant enzyme expression and function by estrogen. Circ Res, 93(2), 170-177. https://doi.org/10.1161/01.Res.0000082334.17947.11
    Subramaniam, D., Thombre, R., Dhar, A., & Anant, S. (2014). DNA Methyltransferases: A Novel Target for Prevention and Therapy [10.3389/fonc.2014.00080]. Frontiers in Oncology, 4, 80. https://www.frontiersin.org/article/10.3389/fonc.2014.00080
    Sukocheva, O., Wadham, C., Holmes, A., Albanese, N., Verrier, E., Feng, F., Bernal, A., Derian, C. K., Ullrich, A., Vadas, M. A., & Xia, P. (2006, Apr 24). Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol, 173(2), 301-310. https://doi.org/10.1083/jcb.200506033
    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021, May). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. https://doi.org/10.3322/caac.21660
    Szabó, R., Hoffmann, A., Börzsei, D., Kupai, K., Veszelka, M., Berkó, A. M., Pávó, I., Gesztelyi, R., Juhász, B., Turcsán, Z., Pósa, A., & Varga, C. (2021). Hormone Replacement Therapy and Aging: A Potential Therapeutic Approach for Age-Related Oxidative Stress and Cardiac Remodeling. Oxidative medicine and cellular longevity, 2021, 8364297-8364297. https://doi.org/10.1155/2021/8364297
    Tan, X., Shi, L., Banerjee, P., Liu, X., Guo, H.-F., Yu, J., Bota-Rabassedas, N., Rodriguez, B. L., Gibbons, D. L., Russell, W. K., Creighton, C. J., & Kurie, J. M. (2021, 01/04/). A protumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. The Journal of Clinical Investigation, 131(1). https://doi.org/10.1172/JCI137186
    Tan, Y., Yin, H., Zhang, H., Fang, J., Zheng, W., Li, D., Li, Y., Cao, W., Sun, C., Liang, Y., Zeng, J., Zou, H., Fu, W., & Yang, X. (2015, Jul 10). Sp1-driven up-regulation of miR-19a decreases RHOB and promotes pancreatic cancer. Oncotarget, 6(19), 17391-17403. https://doi.org/10.18632/oncotarget.3975
    Tanaka, K., Shimizu, K., Kakegawa, S., Ohtaki, Y., Nagashima, T., Kaira, K., Horiguchi, J., Oyama, T., & Takeyoshi, I. (2016). Prognostic significance of aromatase and estrogen receptor beta expression in EGFR wild-type lung adenocarcinoma. American journal of translational research, 8(1), 81-97.
    Tanaka, T., Nakano, T., Hozumi, Y., Martelli, A. M., & Goto, K. (2021, 2021/04/01/). Regulation of p53 and NF-κB transactivation activities by DGKζ in catalytic activity-dependent and -independent manners. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1868(4), 118953. https://doi.org/https://doi.org/10.1016/j.bbamcr.2021.118953
    Tang, H., Chen, J., Han, X., Feng, Y., & Wang, F. (2021, 2021-April-29). Upregulation of SPP1 Is a Marker for Poor Lung Cancer Prognosis and Contributes to Cancer Progression and Cisplatin Resistance [Original Research]. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.646390
    Title, A. C., Hong, S.-J., Pires, N. D., Hasenöhrl, L., Godbersen, S., Stokar-Regenscheit, N., Bartel, D. P., & Stoffel, M. (2018, 2018/11/07). Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion. Nature Communications, 9(1), 4671. https://doi.org/10.1038/s41467-018-07130-z
    Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M., & Jemal, A. (2017, Apr). Global Cancer in Women: Burden and Trend. Cancer Epidemiology Biomarkers & Prevention, 26(4), 444-457. https://doi.org/10.1158/1055-9965.Epi-16-0858
    Torres, A., Torres, K., Paszkowski, T., Jodłowska-Jędrych, B., Radomański, T., Książek, A., & Maciejewski, R. (2011). Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 32(4), 769-776. https://doi.org/10.1007/s13277-011-0179-0
    Toyooka, S., Tsuda, T., & Gazdar, A. F. (2003, Mar). The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat, 21(3), 229-239. https://doi.org/10.1002/humu.10177
    Tsai, J. H., & Yang, J. (2013, Oct 15). Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 27(20), 2192-2206. https://doi.org/10.1101/gad.225334.113
    Tseng, C. H., Chiang, C. J., Tseng, J. S., Yang, T. Y., Hsu, K. H., Chen, K. C., Wang, C. L., Chen, C. Y., Yen, S. H., Tsai, C. M., Huang, M. S., Ho, C. C., Yu, C. J., Tsai, Y. H., Chen, J. S., Chou, T. Y., Tsai, M. H., Chen, H. Y., Su, K. Y., Chen, J. J. W., Chen, H. W., Yu, S. L., Liu, T. W., & Chang, G. C. (2017, Nov 17). EGFR mutation, smoking, and gender in advanced lung adenocarcinoma. Oncotarget, 8(58), 98384-98393. https://doi.org/10.18632/oncotarget.21842
    Ubertini, V., Norelli, G., D'Arcangelo, D., Gurtner, A., Cesareo, E., Baldari, S., Gentileschi, M., Piaggio, G., Nistico, P., Soddu, S., Facchiano, A., & Bossi, G. (2014, 07/07). Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene, 34. https://doi.org/10.1038/onc.2014.191
    Ue, T., Yokozaki, H., Kitadai, Y., Yamamoto, S., Yasui, W., Ishikawa, T., & Tahara, E. (1998, Apr 17). Co-expression of osteopontin and CD44v9 in gastric cancer. Int J Cancer, 79(2), 127-132. https://doi.org/10.1002/(sici)1097-0215(19980417)79:2<127::aid-ijc5>3.0.co;2-v
    Uehara, I., & Tanaka, N. (2018, Jun 27). Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers, 10(7). https://doi.org/10.3390/cancers10070219
    Urdinguio, R. G., Sanchez-Mut, J. V., & Esteller, M. (2009, Nov). Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol, 8(11), 1056-1072. https://doi.org/10.1016/s1474-4422(09)70262-5
    Vellingiri, B., Iyer, M., Devi Subramaniam, M., Jayaramayya, K., Siama, Z., Giridharan, B., Narayanasamy, A., Abdal Dayem, A., & Cho, S.-G. (2020). Understanding the Role of the Transcription Factor Sp1 in Ovarian Cancer: from Theory to Practice. International journal of molecular sciences, 21(3), 1153. https://doi.org/10.3390/ijms21031153
    Vernier, M., McGuirk, S., Dufour, C. R., Wan, L., Audet-Walsh, E., St-Pierre, J., & Giguère, V. (2020, 2020/10/01). Inhibition of DNMT1 and ERRα crosstalk suppresses breast cancer via derepression of IRF4. Oncogene, 39(41), 6406-6420. https://doi.org/10.1038/s41388-020-01438-1
    Vouri, M., & Hafizi, S. (2017, Jun 1). TAM Receptor Tyrosine Kinases in Cancer Drug Resistance. Cancer Res, 77(11), 2775-2778. https://doi.org/10.1158/0008-5472.Can-16-2675
    Wang, J. F., Xi, Z. N., Su, H. J., Bao, Z., & Qiao, Y. H. (2021, May). SP1-induced overexpression of LINC00520 facilitates non-small cell lung cancer progression through miR-577/CCNE2 pathway and predicts poor prognosis. Hum Cell, 34(3), 952-964. https://doi.org/10.1007/s13577-021-00518-y
    Wang, S., & Wang, Z. (2014). EGFR mutations in patients with non-small cell lung cancer from mainland China and their relationships with clinicopathological features: a meta-analysis. International journal of clinical and experimental medicine, 7(8), 1967-1978. https://pubmed.ncbi.nlm.nih.gov/25232377
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161537/
    Wang, T., Xiao, M., Ge, Y., Krepler, C., Belser, E., Lopez-Coral, A., Xu, X., Zhang, G., Azuma, R., Liu, Q., Liu, R., Li, L., Amaravadi, R. K., Xu, W., Karakousis, G., Gangadhar, T. C., Schuchter, L. M., Lieu, M., Khare, S., Halloran, M. B., Herlyn, M., & Kaufman, R. E. (2015, Apr 1). BRAF Inhibition Stimulates Melanoma-Associated Macrophages to Drive Tumor Growth. Clin Cancer Res, 21(7), 1652-1664. https://doi.org/10.1158/1078-0432.Ccr-14-1554
    Wang, Y., Hu, S., Bai, X., Zhang, K., Yu, R., Xia, X., & Zheng, X. (2021). Identification of Significant Genes in Lung Cancer of Nonsmoking Women via Bioinformatics Analysis. Biomed Res Int, 2021, 5516218. https://doi.org/10.1155/2021/5516218
    Wang, Y. C., Wu, Y. S., Hung, C. Y., Wang, S. A., Young, M. J., Hsu, T. I., & Hung, J. J. (2018, Sep 28). USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun, 9(1), 3996. https://doi.org/10.1038/s41467-018-06178-1
    Wang, Y. T., Chang, W. C., & Hung, J. J. (2009, Apr). RNF4 acted as an ubiquitin E3 ligase involved in ubiquitin-dependent degradation of Sumoylated-Sp1. Faseb Journal, 23. <Go to ISI>://WOS:000208621502114
    Wang, Y. T., Chuang, J. Y., Shen, M. R., Yang, W. B., Chang, W. C., & Hung, J. J. (2008, Jul 25). Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J Mol Biol, 380(5), 869-885. https://doi.org/10.1016/j.jmb.2008.05.043
    Weisz, L., Damalas, A., Liontos, M., Karakaidos, P., Fontemaggi, G., Maor-Aloni, R., Kalis, M., Levrero, M., Strano, S., Gorgoulis, V., Rotter, V., Blandino, G., & Oren, M. (2007, 04/01). Mutant p53 Enhances Nuclear Factor KB Activation by Tumor Necrosis Factor A in Cancer Cells. Cancer research, 67, 2396-2401. https://doi.org/10.1158/0008-5472.CAN-06-2425
    Williams, A. B., & Schumacher, B. (2016). p53 in the DNA-Damage-Repair Process. Cold Spring Harbor perspectives in medicine, 6(5), a026070. https://doi.org/10.1101/cshperspect.a026070
    Wischhusen, J., Melero, I., & Fridman, W. H. (2020). Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint [10.3389/fimmu.2020.00951]. Frontiers in Immunology, 11, 951. https://www.frontiersin.org/article/10.3389/fimmu.2020.00951
    Wu, S.-G., Liao, W.-Y., Su, K.-Y., Yu, S.-L., Huang, Y.-L., Yu, C.-J., Chih-Hsin Yang, J., & Shih, J.-Y. (2020). Prognostic Characteristics and Immunotherapy Response of Patients With Nonsquamous NSCLC With Kras Mutation in East Asian Populations: A Single-Center Cohort Study in Taiwan. JTO clinical and research reports, 2(2), 100140-100140. https://doi.org/10.1016/j.jtocrr.2020.100140
    Wu, X. Y., Chen, H. C., Li, W. W., Yan, J. D., & Lv, R. Y. (2020, Aug 1). DNMT1 promotes cell proliferation via methylating hMLH1 and hMSH2 promoters in EGFR-mutated non-small cell lung cancer. J Biochem, 168(2), 151-157. https://doi.org/10.1093/jb/mvaa034
    Wu, Z., Luo, J., Huang, T., Yi, R., Ding, S., Xie, C., Xu, A., Zeng, Y., Wang, X., Song, Y., Shi, X., & Long, H. (2020, Dec 17). MiR-4310 induced by SP1 targets PTEN to promote glioma progression. Cancer Cell Int, 20(1), 567. https://doi.org/10.1186/s12935-020-01650-9
    Xu, T. p., Liu, X. x., Xia, R., Yin, L., Kong, R., Chen, W. m., Huang, M. d., & Shu, Y. q. (2015, 2015/11/01). SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene, 34(45), 5648-5661. https://doi.org/10.1038/onc.2015.18
    Yagami, A., Orihara, K., Morita, H., Futamura, K., Hashimoto, N., Matsumoto, K., Saito, H., & Matsuda, A. (2010, Nov 15). IL-33 mediates inflammatory responses in human lung tissue cells. J Immunol, 185(10), 5743-5750. https://doi.org/10.4049/jimmunol.0903818
    Yang, L., Chang, C. C., Sun, Z., Madsen, D., Zhu, H., Padkjær, S. B., Wu, X., Huang, T., Hultman, K., Paulsen, S. J., Wang, J., Bugge, A., Frantzen, J. B., Nørgaard, P., Jeppesen, J. F., Yang, Z., Secher, A., Chen, H., Li, X., John, L. M., Shan, B., He, Z., Gao, X., Su, J., Hansen, K. T., Yang, W., & Jørgensen, S. B. (2017, Oct). GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med, 23(10), 1158-1166. https://doi.org/10.1038/nm.4394
    Yang, W. B., Chen, P. H., Hsu, T. s., Fu, T. F., Su, W. C., Liaw, H., Chang, W. C., & Hung, J. J. (2014, Feb 15). Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget, 5(3), 740-753. https://doi.org/10.18632/oncotarget.1608
    Yang, W. B., Hsu, C. C., Hsu, T. I., Liou, J. P., Chang, K. Y., Chen, P. Y., Liu, J. J., Yang, S. T., Wang, J. Y., Yeh, S. H., Chen, R. M., Chang, W. C., & Chuang, J. Y. (2020, Oct 14). Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma. Neuro Oncol, 22(10), 1439-1451. https://doi.org/10.1093/neuonc/noaa103
    Yang, Z. R., Liu, M. N., Yu, J. H., Yang, Y. H., Chen, T. X., Han, Y. C., Zhu, L., Zhao, J. K., Fu, X. L., & Cai, X. W. (2020, Oct). Treatment of stage III non-small cell lung cancer in the era of immunotherapy: pathological complete response to neoadjuvant pembrolizumab and chemotherapy. Transl Lung Cancer Res, 9(5), 2059-2073. https://doi.org/10.21037/tlcr-20-896
    Zeng, B., Zhou, M., Wu, H., & Xiong, Z. (2018). SPP1 promotes ovarian cancer progression via Integrin β1/FAK/AKT signaling pathway. OncoTargets and therapy, 11, 1333-1343. https://doi.org/10.2147/OTT.S154215
    Zhang, J., Yang, C., Wu, C., Cui, W., & Wang, L. (2020). DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers, 12(8), 2123. https://doi.org/10.3390/cancers12082123
    Zhang, L., Tian, S., Zhao, M., Yang, T., Quan, S., Song, L., & Yang, X. (2021). SUV39H1-Mediated DNMT1 is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer. Anticancer Agents Med Chem, 21(6), 756-765. https://doi.org/10.2174/1871520620666200721110016
    Zhao, H., Zhou, L., Shangguan, A. J., & Bulun, S. E. (2016). Aromatase expression and regulation in breast and endometrial cancer. Journal of molecular endocrinology, 57(1), R19-R33. https://doi.org/10.1530/JME-15-0310
    Zheng, C., Li, X., Ren, Y., Yin, Z., & Zhou, B. (2020, 2020-February-27). Coexisting EGFR and TP53 Mutations in Lung Adenocarcinoma Patients Are Associated With COMP and ITGB8 Upregulation and Poor Prognosis [Original Research]. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.00030
    Zhou, W., & Christiani, D. C. (2011, May). East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer, 30(5), 287-292. https://doi.org/10.5732/cjc.011.10106
    Zonneville, J., Wang, M., Alruwaili, M. M., Smith, B., Melnick, M., Eng, K. H., Melendy, T., Park, B. H., Iyer, R., Fountzilas, C., & Bakin, A. V. (2021, 2021/07/12). Selective therapeutic strategy for p53-deficient cancer by targeting dysregulation in DNA repair. Communications Biology, 4(1), 862. https://doi.org/10.1038/s42003-021-02370-0

    無法下載圖示 校內:2026-08-12公開
    校外:2026-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE