簡易檢索 / 詳目顯示

研究生: 高舶格
Kao, Po-Ke
論文名稱: 無鉛銲錫微接點受剪切作用之黏塑性應力分析
Viscoplastic stress analysis of Pb-free solder micro joint under shear load
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 無鉛銲錫亞蘭德(Anand)模型微接點黏塑性
外文關鍵詞: Pb-free solder, Anand model, micro joint, viscoplastic
相關次數: 點閱:99下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為國際上環保意識抬頭,各國已禁止在電子產品中使用有毒物質,消費性產品中含鉛銲錫已被無鉛銲錫所取代。而隨著對於電子晶片高速運算與傳輸等的規格需求,半導體製程也朝著微縮化前進,相對地,因為試片製造的困難,所以在微觀尺度下無鉛銲錫其材料性質與可靠性仍然無法完全掌握。微電子封裝中電子構裝的小型化需要非常高密度的互聯與銲接,僅具有數十微米的支座高度,因此介金屬佔銲錫區的體積比對於形成可靠的接頭影響更為顯著,為了解無鉛銲錫在此尺度下的行為,本論文以實驗方法針對錫銀微接點試件藉由剪切負載來觀察材料的變形及損傷行為。實驗考慮的條件包含溫度、位移控制和負載峰值。實驗結果表現,無鉛銲錫微接點在剪切負載下表現明顯的塑性變形,而材料剪切強度隨著溫度的上升而下降,且相較於基於塊材試件之黏塑性參數所預測結果而言,實驗之飽和應力值較低。研究亦利用電子顯微鏡觀察出扇貝狀的介金屬層以及銲錫材料的塊狀錫元素與細紋的銀元素或錫銀合金之晶粒結構,在能量色散X-射線光譜確認其介金屬層為Cu6Sn5之組成。最後,利用有限元素法模擬不同溫度條件下之雙面搭接剪切實驗,並以黏塑性亞蘭德(Anand)模型作為無鉛銲錫微接點的本構方程,以發展銲錫材料在此微尺度的材料本構模型。

    In this study, the constitutive behavior of Pb-free solder micro joint at various temperatures were investigated by using the double lap-shear experiment. From the scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry analyses, it was observed that the ratio of solder to intermetallic compound (IMC) is about 3:1 and the scallop-shaped IMC is Cu6Sn5 in the Pb-free solder micro joint. It was also observed that the solder consists block grain of Sn and interdendritic grain of SnAg or Ag. The relationship between stress-strain constitutive behavior and various temperature was obtained from the double lap-shear experiment. The experiment results show that the Pb-free micro joint exhibits significant plastic deformation under shear loading, and the saturation stress decreases with increasing temperature. Numerical finite element (FE) simulations based on bulk-solder viscoplastic Anand model were then performed to consider the mechanical tests for evaluating the experimental response of the Pb-free micro solder joint. From the comparison between the numerical and experimental results, it was observed that the saturation stress of the micro joint is over-estimated when a bulk-solder viscoplastic model is used in the simulation. This inaccuracy may be attributed to the difference in the microstructure of the micro joint and the bulk solder. In the micro joint, the higher strength compound between the interdendritic zones in the solder is much less than in the bulk solder joint, and therefore, reduces the strength of the micro solder joint. Numerical model fitting was also applied to obtain the Anand viscoplastic model parameters for the micro-joint. The predictions of numerical model based on the fitting parameters were validated by the experimental evaluations of the micro joint under shear.

    目錄 摘要 I Extended Abstract II 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號說明 XXIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究目的 7 1.4論文架構 7 第二章 基本理論 9 2.1統一型黏塑性本構模型 9 2.2 Anand黏塑性本構模型 14 2.3 Anand 模型參數擬合方法 15 第三章 銲錫微接點拉伸實驗 18 3.1錫接點試件 18 3.2實驗設置 20 3.3試件安裝流程 24 3.4實驗方法與條件 24 第四章 微接點結構特性與本構行為 28 4.1實驗結果 28 4.2微接點銲錫區觀測 35 4.3介金屬組成分析 38 4.4微接點剪切變形模擬 40 4.4.1 有限元素模型設定 40 4.4.2 模型邊界條件設定 43 4.4.3 位移控制負載 44 4.4.4 有限元素網格收斂性分析 46 4.4.5 模擬結果討論 48 第五章 結論與未來方向 58 5.1結論 58 5.2未來工作 59 參考文獻 60 附錄一 64 環氧樹脂機械性質測試曲線 64 附錄二 70 渦電流位移感測器校正 70 電容式位移感測器校正 73

    [1]Y. Yao, X. Long, and L. M. Keer, A Review of Recent Research on the Mechanical Behavior of Lead-Free Solders, 2017.
    [2]J. Keller, D. Baither, U. Wilke, and G. Schmitz, “Mechanical properties of Pb-free SnAg solder joints”, Acta Materialia, vol. 59, pp. 2731-2741, 2011.
    [3]M. Alam, H. Lu, C. Bailey, B. Wu, and Y. Chan, “Shear strength analysis of ball grid array (BGA) solder interfaces”, 9th Electronics Packaging Technology Conference, pp. 770-773, 2007.
    [4]X. Huang, S.-W. Lee, C. C. Yan, and S. Hui, “Characterization and analysis on the solder ball shear testing conditions”, 51st Electronic Components and Technology Conferencepp, pp. 1065-1071, 2001
    [5]J. Y. H. Chia, B. Cotterell, and T. C. Chai, “The mechanics of the solder ball shear test and the effect of shear rate”, Materials Science and Engineering: A, vol. 417, pp. 259-274, 2006.
    [6]J.-W. Kim, and S.-B. Jung, “Experimental and finite element analysis of the shear speed effects on the Sn–Ag and Sn–Ag–Cu BGA solder joints”, Materials Science and Engineering: A, vol. 371 , pp. 267-276, 2004.
    [7]B. Zhou, Q. Zhou, and Y.-f. En, “Study on interfacial behavior and shear strength of lead-free micro-interconnect bump after SnPb reballing”, 13th International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1317-1319, 2012.
    [8]C. Chen, L. Zhang, J. Zhao, L. Cao, and J. K. Shang, “Gap size effects on the shear strength of Sn/Cu and Sn/FeNi solder joints”, Journal of electronic materials, vol. 41, pp. 2487-2494, 2012.
    [9]T. An, and F. Qin, “Effects of the intermetallic compound microstructure on the tensile behavior of Sn3. 0Ag0. 5Cu/Cu solder joint under various strain rates”, Microelectronics Reliability, vol. 54, pp. 932-938, 2014.
    [10]S. F. Choudhury, and L. Ladani, “Miniaturization of micro-solder bumps and effect of IMC on stress distribution”, Journal of Electronic Materials, vol. 45, pp. 3683-3694, 2016.
    [11]S. F. Choudhury, “Intermetallic Compounds and Their Effects on the Mechanical Performance of Micro Scale Solder Bonds”, Ph. D dissertation, University of Connectiuct, 2016.
    [12]Y. Chen, C. Chung, C.-R. Yang, and C. R. Kao, “Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics”, Microelectronics Reliability, vol. 53, pp. 47-52, 2013.
    [13]S. F. Choudhury, and L. Ladani, “Effect of intermetallic compounds on the thermomechanical fatigue life of three-dimensional integrated circuit package microsolder bumps: finite element analysis and study”, Journal of Electronic Packaging, vol. 137, pp. 041003, 2015.
    [14]D. Mu, S. McDonald, J. Read, H. Huang, and K. Nogita, “Critical properties of Cu6Sn5 in electronic devices: Recent progress and a review”, Current Opinion in Solid State and Materials Science, vol. 20, pp. 55-76, 2016.
    [15]L. Zhang, C.-w. He, Y.-h. Guo, J.-g. Han, Y.-w. Zhang, and X.-y. Wang, “Development of SnAg-based lead free solders in electronics packaging”, Microelectronics Reliability, vol. 52, pp. 559-578, 2012.
    [16]L. Anand, “Constitutive equations for the rate-dependent deformation of metals at elevated temperatures”, Journal of engineering materials and technology, vol. 104, pp. 12-17, 1982.
    [17]S. B. Brown, K. H. Kim, and L. Anand, “An internal variable constitutive model for hot working of metals”, International journal of plasticity, vol. 5, pp. 95-130, 1989.
    [18]Z. Cheng, G. Wang, L. Chen, J. Wilde, and K. Becker, “Viscoplastic Anand model for solder alloys and its application”, Soldering & Surface Mount Technology, vol. 12, pp. 31-36, 2000.
    [19]L. Zhang, Z.-Q. Liu, and Y.-t. Ji, “Anand constitutive model of lead-free solder joints in 3D IC device”, Journal of Physics: Conference Series, 2016.
    [20]M. Motalab, Z. Cai, J. C. Suhling, and P. Lall, “Determination of Anand constants for SAC solders using stress-strain or creep data”, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 910-922, 2012.
    [21]R. C. Hibbeler, Mechanics of Material, eighth edition, 2010.
    [22]D. Ma, W. Wang, and S. Lahiri, “Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow”, Journal of applied physics, vol. 91, pp. 3312-3317, 2002.

    下載圖示 校內:2024-07-24公開
    校外:2024-07-24公開
    QR CODE