| 研究生: |
楊宜脩 Yang, Yi-Hsiu |
|---|---|
| 論文名稱: |
空間光調製器應用之研究 Investigation on Spatial Light Modulator Employment |
| 指導教授: |
蔡錦俊
Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 空間光調製器 、自發參數下轉換 、高斯光束 |
| 外文關鍵詞: | Spatial Light Modulator, Spontaneous Parametric Down-Conversion, Gaussian Beam |
| 相關次數: | 點閱:153 下載:70 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討了空間光調製器(SLM)在古典光學與量子光學系統中的應用。首先介紹了光的基礎理論,接著重點討論了使用SLM的實務操作,包括校準過程以生成查詢表(look-up table),這對於精確調製至關重要。論文還展示了如何利用SLM將高斯光束結構化為平面波,突顯了光的調製技術。此外,論文還探討了SLM在自發參數下轉換(SPDC)系統中的應用,這是量子光學中的一個關鍵領域。通過這些實驗展示,論文提供了對SLM校準與設置的見解,強調了SLM在光學研究中的多功能性及其在光學研究發展中的重要性。
This thesis explores the capabilities of Spatial Light Modulator (SLM) in both classical and quantum optical systems. After introducing foundational light theories, the work focuses on the practical aspects of using SLM, including the calibration process to generate a look-up table, which is essential for accurate modulation. The thesis also demonstrates how SLM can be used to structure a Gaussian beam into a plane wave, showcasing the modulation of light. Furthermore, it examines the integration of SLM in Spontaneous Parametric Down-Conversion (SPDC) systems, a crucial aspect of quantum optics. Through these demonstrations, the thesis provides valuable insights into SLM calibration and setup, highlighting the SLM's versatility and its importance in advancing optical research.
[1] Authur D. Fisher Cardinal Warde. “Spatial Light Modulators: Applications and Functional Capabilities”. In: Optical Signal Processing (1987). doi: https://doi.org/10.1016/B978-012-355760-5.50019-3.
[2] Mary L. Boas. Mathematical Methods in the Physical Sciences, 3rd Edition. Wiley, 2005. isbn:9780471198260.
[3] Jr. Frank S. Crawford. Waves(Berkeley Physics Course, Vol.3). Macgraw-Hill Book Company, 1968. isbn: 9780070048607.
[4] E. Hecht. Optics. Pearson, 2016. isbn: 9781292096933.
[5] David J. Griffiths. Introduction to Electrodynamics 4th Edition. Cambridge University Press, 2017. isbn: 9781108420419.
[6] Arthur William Poyser. Magnetism and Electricity A Manual for Students in Advanced Classes. Longmans’ advanced sci. manuals. Longmans, Green, & Company, 1892. url: https://books.google.com.tw/books?id=JzBAAAAAYAAJ.
[7] Kathryn Leigh Smith. What Is a Plane Wave? url: https://www.youtube.com/watch?v=ES2WFevGM0g.
[8] Alan Cheville. Plane Waves. url: https://www.youtube.com/watch?v=xkG86pwaOH0.
[9] Carl R. Nave. Rayleigh-Jeans vs Planck. url: http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html.
[10] Randall Knight. Physics for Scientists and Engineers: A Strategic Approach with Modern Physics(4th Edition). Pearson, 2016. isbn: 9780134092508.
[11] Claude Fabre Gilbert Grynberg Alain Aspect and Claude Cohen-Tannoudji. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light. Cambridge University Press, 2010. isbn: 9780521551120.
[12] David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics, 3rd Edition. Cambridge University Press, 2018. isbn: 9781107189638.
[13] Robert W. Boyd. Nonlinear Optics, 3rd Edition. Academic Press, 2008. isbn: 9780123694706.
[14] Christophe Couteau. “Spontaneous parametric down-conversion”. In: Contemporary Physics 59.(3) (2018), pp. 291–304. doi: https://doi.org/10.1080/00107514.2018.1488463.
[15] Alain Aspect. “Trois tests exp´erimentaux des in´ egalit´ es de Bell par corr´ elation de polarisation de photons”. PhD thesis. Universit´ e Paris Sud- Paris XI, 1983.
[16] MarkFox.Quantum Optics: An Introduction. Oxford University Press, 2006. isbn: 9780198566731.
[17] Ushio Inc. Fundamental knowledge relating laser diode. url: https://www.ushio.co.jp/en/laser/ushio-laser/about.html.
[18] Hiroki Hamada. “Characterization of Gallium Indium Phosphide and Progress of AluminumGallium Indium Phosphide System Quantum-Well Laser Diode”. In: Materials 10.(8) (2017). doi: https://doi.org/10.3390/ma10080875.
[19] James W. Raring et al. “High-Power GaN-based Laser Diodes for Next Generation Applications”. In: CS MANTECH Conference (2022).
[20] Zhu L. and Wang J. “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators”. In: Scientific Reports 4.7441 (2014). doi: https://doi.org/10.1038/srep07441.
[21] Darwin Hu et al. “Modulating both amplitude and phase in a single-spatial light modulator (SLM)”. In: Proc. SPIE 12026.Practical Holography XXXVI: Displays, Materials, and Applications,1202608 (2022). doi: https://doi.org/10.1117/12.2607186.
[22] Santec. “LCOS-SLM Liquid Crystal Based Spatial Light Modulator: SLM-200”. In: SLM-200 Operation Manual Ver.13.0 SS-18-0442-13 (2023).
[23] Carmelo Rosales-Guzm´an and Andrew Forbes. How to Shape Light with Spatial Light Modulators. SPIE Press, 2017. isbn: 9781510613010.
[24] Thomas J. Fellers Douglas B. Murphy Kenneth R. Spring and Michael W. Davidson. Principles of Birefringence. url: https://www.microscopyu.com/techniques/polarized-light/principles-of-birefringence.
[25] Aur´elie Jullien. “Spatial light modulators”. In: Photoniques N101 (2020), pp. 59–64. doi: https://doi.org/10.1051/photon/202010159.
[26] Samuel J. Ling. Diffraction Through a Double-Slit. url: http://www.physicsbootcamp.org/section-diffraction-through-a-double-slit-light.html.
[27] Paul F. Goldsmith. Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications. Wiley-IEEE Press, 1998. isbn: 9780780334397.