簡易檢索 / 詳目顯示

研究生: 楊宜脩
Yang, Yi-Hsiu
論文名稱: 空間光調製器應用之研究
Investigation on Spatial Light Modulator Employment
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 111
中文關鍵詞: 空間光調製器自發參數下轉換高斯光束
外文關鍵詞: Spatial Light Modulator, Spontaneous Parametric Down-Conversion, Gaussian Beam
相關次數: 點閱:153下載:70
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討了空間光調製器(SLM)在古典光學與量子光學系統中的應用。首先介紹了光的基礎理論,接著重點討論了使用SLM的實務操作,包括校準過程以生成查詢表(look-up table),這對於精確調製至關重要。論文還展示了如何利用SLM將高斯光束結構化為平面波,突顯了光的調製技術。此外,論文還探討了SLM在自發參數下轉換(SPDC)系統中的應用,這是量子光學中的一個關鍵領域。通過這些實驗展示,論文提供了對SLM校準與設置的見解,強調了SLM在光學研究中的多功能性及其在光學研究發展中的重要性。

    This thesis explores the capabilities of Spatial Light Modulator (SLM) in both classical and quantum optical systems. After introducing foundational light theories, the work focuses on the practical aspects of using SLM, including the calibration process to generate a look-up table, which is essential for accurate modulation. The thesis also demonstrates how SLM can be used to structure a Gaussian beam into a plane wave, showcasing the modulation of light. Furthermore, it examines the integration of SLM in Spontaneous Parametric Down-Conversion (SPDC) systems, a crucial aspect of quantum optics. Through these demonstrations, the thesis provides valuable insights into SLM calibration and setup, highlighting the SLM's versatility and its importance in advancing optical research.

    1 Introduction 9 2 Light Field 11 2.1 Wave 11 2.1.1 Harmonic Oscillation 11 2.1.2 Wave Equation 14 2.2 Electromagnetic Wave 16 2.2.1 Mathematical Tools for Vector Analysis 16 2.2.2 Electric Gauss's Law 16 2.2.3 Magnetic Gauss's Law 17 2.2.4 Ampere's Circuital Law 18 2.2.5 Faraday's Induction Law 20 2.2.6 Maxwell's Equations 21 2.2.7 Plane Wave 24 2.2.8 Poynting Theorem 27 2.2.9 Polarisation 29 3 Photon 31 3.1 Realisation of Photon 31 3.1.1 Energy Quantisation 31 3.1.2 Photoelectric Effect 33 3.1.3 Compton Scattering 35 3.2 Quantisation of Electromagnetic Field 35 3.2.1 Classical Mechanics 35 3.2.2 Quantum Harmonic Oscillator 38 3.2.3 Vector Potential 40 3.2.4 Modes Decomposition of Electromagnetic Wave 41 3.2.5 States and Operators of Quantum Optics 43 3.3 Photon Pair 43 3.3.1 Nonlinear Optics 43 3.3.2 Spontaneous Parametric Down Conversion 48 3.3.3 Entangled Photon Pair 50 4 Laser 51 4.1 Stimulated Emission 51 4.1.1 Population of Energy Levels 51 4.1.2 Boltzmann Distribution 51 4.1.3 Einstein AB Coefficients 52 4.2 Introduction to Laser 53 4.2.1 Working Principle 53 4.2.2 Laser Modes 54 4.3 Diode Laser 54 4.3.1 Structure of Diode Laser 55 4.3.2 Working Principle of Diode Laser 55 4.3.3 633nm Diode Laser 56 4.3.4 404nm Diode Laser 56 5 Spatial Light Modulator 58 5.1 Introduction to the Spatial Light Modulator 58 5.1.1 Types of SLM 58 5.1.2 Structure of a reflective phase-only SLM 58 5.1.3 Liquid Crystal 59 5.1.4 The Gray Level of a SLM 61 5.2 Working Principle of SLM 62 6 Employing SLM in Classical Source Setup 63 6.1 SLM Calibration 63 6.1.1 Introduction 63 6.1.2 Look-Up-Table Generation 63 6.2 SLM Implementation 68 6.2.1 The Laser 68 6.2.2 Blazed-Grating Hologram 68 6.2.3 4f System 69 6.2.4 Camera 69 7 Gaussian Beam 70 7.1 Introduction to Gaussian Beam 70 7.2 Mathematical Expression 70 7.2.1 Helmholtz Equation 70 7.2.2 TEM Wave 71 7.2.3 Paraxial Approximation 72 7.2.4 Gaussian Beam's Electric Field Derivation 72 7.3 Characteristic of Gaussian Beam 76 7.3.1 Intensity Distribution 76 7.3.2 Beam Radius and Beam Waist 76 7.3.3 Rayleigh Length 78 7.3.4 Divergence Angle 78 7.3.5 Gouy Phase 78 7.4 Generate a Plane Wave from a Gaussian Beam via a Phase-only SLM 78 7.4.1 Motivation 78 7.4.2 Phase Term of a Gaussian Beam 78 7.4.3 Hologram Generation 79 8 Employing SLM in Quantum Source Setup 82 8.1 SPDC Generation Setup 82 8.1.1 Implementation 82 8.1.2 Time Correlation Confirmation 84 8.2 SLM in Quantum Source Setup 88 8.3 Conclusion 89 Bibliography 90 A TheLook-Up-TableofSLM-200 92 B Blazed-Grating Hologram Generation Program 95 C The Look-Up-Table Generation Program 102 D Gaussian Beam to Plane Wave Hologram Generation Program 107

    [1] Authur D. Fisher Cardinal Warde. “Spatial Light Modulators: Applications and Functional Capabilities”. In: Optical Signal Processing (1987). doi: https://doi.org/10.1016/B978-012-355760-5.50019-3.
    [2] Mary L. Boas. Mathematical Methods in the Physical Sciences, 3rd Edition. Wiley, 2005. isbn:9780471198260.
    [3] Jr. Frank S. Crawford. Waves(Berkeley Physics Course, Vol.3). Macgraw-Hill Book Company, 1968. isbn: 9780070048607.
    [4] E. Hecht. Optics. Pearson, 2016. isbn: 9781292096933.
    [5] David J. Griffiths. Introduction to Electrodynamics 4th Edition. Cambridge University Press, 2017. isbn: 9781108420419.
    [6] Arthur William Poyser. Magnetism and Electricity A Manual for Students in Advanced Classes. Longmans’ advanced sci. manuals. Longmans, Green, & Company, 1892. url: https://books.google.com.tw/books?id=JzBAAAAAYAAJ.
    [7] Kathryn Leigh Smith. What Is a Plane Wave? url: https://www.youtube.com/watch?v=ES2WFevGM0g.
    [8] Alan Cheville. Plane Waves. url: https://www.youtube.com/watch?v=xkG86pwaOH0.
    [9] Carl R. Nave. Rayleigh-Jeans vs Planck. url: http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html.
    [10] Randall Knight. Physics for Scientists and Engineers: A Strategic Approach with Modern Physics(4th Edition). Pearson, 2016. isbn: 9780134092508.
    [11] Claude Fabre Gilbert Grynberg Alain Aspect and Claude Cohen-Tannoudji. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light. Cambridge University Press, 2010. isbn: 9780521551120.
    [12] David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics, 3rd Edition. Cambridge University Press, 2018. isbn: 9781107189638.
    [13] Robert W. Boyd. Nonlinear Optics, 3rd Edition. Academic Press, 2008. isbn: 9780123694706.
    [14] Christophe Couteau. “Spontaneous parametric down-conversion”. In: Contemporary Physics 59.(3) (2018), pp. 291–304. doi: https://doi.org/10.1080/00107514.2018.1488463.
    [15] Alain Aspect. “Trois tests exp´erimentaux des in´ egalit´ es de Bell par corr´ elation de polarisation de photons”. PhD thesis. Universit´ e Paris Sud- Paris XI, 1983.
    [16] MarkFox.Quantum Optics: An Introduction. Oxford University Press, 2006. isbn: 9780198566731.
    [17] Ushio Inc. Fundamental knowledge relating laser diode. url: https://www.ushio.co.jp/en/laser/ushio-laser/about.html.
    [18] Hiroki Hamada. “Characterization of Gallium Indium Phosphide and Progress of AluminumGallium Indium Phosphide System Quantum-Well Laser Diode”. In: Materials 10.(8) (2017). doi: https://doi.org/10.3390/ma10080875.
    [19] James W. Raring et al. “High-Power GaN-based Laser Diodes for Next Generation Applications”. In: CS MANTECH Conference (2022).
    [20] Zhu L. and Wang J. “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators”. In: Scientific Reports 4.7441 (2014). doi: https://doi.org/10.1038/srep07441.
    [21] Darwin Hu et al. “Modulating both amplitude and phase in a single-spatial light modulator (SLM)”. In: Proc. SPIE 12026.Practical Holography XXXVI: Displays, Materials, and Applications,1202608 (2022). doi: https://doi.org/10.1117/12.2607186.
    [22] Santec. “LCOS-SLM Liquid Crystal Based Spatial Light Modulator: SLM-200”. In: SLM-200 Operation Manual Ver.13.0 SS-18-0442-13 (2023).
    [23] Carmelo Rosales-Guzm´an and Andrew Forbes. How to Shape Light with Spatial Light Modulators. SPIE Press, 2017. isbn: 9781510613010.
    [24] Thomas J. Fellers Douglas B. Murphy Kenneth R. Spring and Michael W. Davidson. Principles of Birefringence. url: https://www.microscopyu.com/techniques/polarized-light/principles-of-birefringence.
    [25] Aur´elie Jullien. “Spatial light modulators”. In: Photoniques N101 (2020), pp. 59–64. doi: https://doi.org/10.1051/photon/202010159.
    [26] Samuel J. Ling. Diffraction Through a Double-Slit. url: http://www.physicsbootcamp.org/section-diffraction-through-a-double-slit-light.html.
    [27] Paul F. Goldsmith. Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications. Wiley-IEEE Press, 1998. isbn: 9780780334397.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE