| 研究生: |
葉宏祥 Yeh, Hung-Hsiang |
|---|---|
| 論文名稱: |
低壓氣相溶液輔助高效率2D/3D鈣鈦礦太陽能電池 High efficiency 2D/3D perovskite solar cell by Low-Pressure Vapor-Assisted Solution Process |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、苯乙基碘化銨 、低壓氣相沉積 、2D/3D鈣鈦礦 、穩定性 |
| 外文關鍵詞: | Perovskite solar cell, PEAI (Phenylethylammonium iodide), Low-Pressure Vapor-Assisted Solution Process, 2D/3D Perovskite solar cell, Stability |
| 相關次數: | 點閱:86 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池的光電轉換效率發展迅速,使再生能源的研究展露出一道曙光。 因此為了達到商業化生產,除了優異的光電轉換效率之外,電池的長時間工作穩定性以及大面積元件的表現都是重要的關鍵,因此本篇論文的研究動機為提升鈣鈦礦太陽能電池的穩定性。
本篇論文的研究主要探討添加不同比例的有機材料PEAI(Phenylethylammonium iodide)對於其合成的鈣鈦礦太陽能電池元件長時間穩定性的影響。鈣鈦礦吸光層的製備是藉由低壓氣相沉積法氣化MAI (Methylamine iodide)粉末與PEAI/PbI2混合旋塗沈積的薄膜進行氣固反應,調變反應時間、溫度以及壓力條件得到優化後的鈣鈦礦薄膜。使用氣相沉積法所形成的鈣鈦礦薄膜具有晶粒較大以及均勻性較佳的優點,而添加微量的PEAI則有助於晶體的成核以及成長,減少缺陷以及漏電流的產生。利用吸收圖譜(UV-vis)、受激螢光放光(Photoluminescence)以及GIWAXS (Grazing-Incidence Wide-Angle X-ray Scattering)等光學儀器分析添加PEAI後形成的鈣鈦礦薄膜其結構以及光學性質的變化。在添加高濃度的PEAI發現,元件的效率並無明顯的差異,因此發現MA+和PEA+在反應的過程中會相互的競爭,在長時間的反應,MA+能逐漸取代PEA+使電性以及結構發生改變。結果顯示適量的添加PEAI後,其鈣鈦礦元件在電壓以及電流的數據都有顯著的提升,最佳的元件效率能達到19.1%。而在穩定性表現方面,封裝後的元件(無光照條件下)在將近一千小時的測試都能維持原先的效率,此結果也證明PEAI的添加對於鈣鈦礦元件的長時間穩定性的助益。
In this study, the formation of layered 2D structure perovskites which have been proved to be highly stable structure is performed by vapor deposition with larger organic cation iodide, phenylethylammonium (PEAI, C8H9NH3I). We mix lead iodide (PbI2) and PEAI in the dimethylformamide (DMF) solvent and react with methylammonium iodide (MAI) vapor in the low pressure heating oven. The number of the perovskite layers have been varied (n) from n = 1 through n = ∞ in the series of (PEA)2(MA)n-1PbnI3n+1. The stoichiometry of PEAI in perovskite has impact on the photoluminescence (PL) intensity and the bandgap. The scanning electron microscope images show that the PEAI-containing perovskite film has more uniform morphology and larger grain size than that of MAPbI3. The device employing PEA2(MA)39Pb40I121 (n=40) achieves a champion power conversion efficiency (PCE) of 19.10 % with a open-circuit voltage (VOC) of 1.084 V, current density (Jsc) of 21.91mA/cm2 and fill factor (FF) of 80.36%.
1. A. E. Becquerel, Comptes Rendus de L’Academie des Sciences.Comptes Rendus de L’Academie des Sciences 1839, 9, 561-567
2. C. Fritts, Advancement of Science 1883, 33, 97
3. R. S. Ohl, Light-Sensitive Electric Device.U. S. Patent 2402662 1946
4. M. A. Green, Photovoltaics: coming of age.IEEE Conference on Photovoltaic Specialists 1990, 1, 1-8
5. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Sola Cell.IEEE Journal of Photovoltaics 2014, 4, 1433-1435
6. Weiwei Deng, D. Chen, Z. Xiong, Pierre Jacques Verlinden, Senior Member, IEEE, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, P. Altermat, 20.8% PERC Solar Cell on 156 mm x 156 mm P-Type Multicrystalline Silicon Substrate.IEEE Journal of Photovoltaics 2015
7. T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, T. Matsui, H. Sai, Thin film solar cells.28th European Photovoltaic Solar Energy Conference 2013, 2213 - 2217
8. B. M. Kayes, H.Nie, R. Twist, S.G. Spruytte, F.Reinhardt, I.C. Kizilyalli, G.S. Higashi, Proceedings of the 37th IEEE Photovoltaic Specialists Conference.Proceedings of the 37th IEEE Photovoltaic Specialists Conference 2011
9. F. Dimroth, New world record for solar cell efficiency at 46% – French-German cooperation confirms competitive advantage of European photovoltaic industry.Press Release 2014
10. FirstSolarPress, First Solar builds the highest efficiency thin film PV cell on
record.2014
11. Solibro, Solibro beats world record for solar cells.Press Release 2014
12. B. O'Regan, M. Graetzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature 1991, 353, 737-740
13. H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa, H. Arakawa, Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand.J. Mater. Chem. A, 2016, 4, 1762-1770
14. C. Longo, M.-A. D. Paoli, Dye-sensitized solar cells: a successful combination of materials.J. Braz. Chem. Soc 2003, 14, 889-901,
85
15. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc 2009, 131, 6050-6051
16. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells.Science 2017, 356 1376-1379
17. NREL,https://www.nrel.gov/pv/assets/images/efficiency-chart.png 2016
18. K. Gibbs, Schoolphysis
19. ElectronicsTutorials, http://www.electronics-tutorials.ws/diode/diode_2.html
20. B. V. Zeghbroeck, Principles of Electronic Devices.Principles of Electronic Devices 2011
21. ITACA, http://www.itacanet.org/eng-home/
22. PVEDUCATION, http://www.pveducation.org/
23. N. Koide, A. Islam, Y. Chiba, L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit.Journal of Photochemistry and Photobiology A: Chemistry 2006, 182, 296-305
24. B. Dissertation, U. of Arizona 2007
25. W. Tress, in Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures, ed. by N.-G. Park, M. Grätzel, T. Miyasaka, Springer International Publishing, Cham, 2016, pp. 53-77.
26. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale 2011, 3, 4088-4093
27. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.Sci Rep 2012, 2, 591
28. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature 2013, 499, 316-319
29. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nat Mater 2014, 13, 897-903
30. M. Liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature 2013, 501, 395-398,
86
31. C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition.Adv Mater 2014, 26, 6647-6652
32. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Perovskite solar cells employing organic charge-transport layers.Nature Photonics 2013, 8, 128-132
33. L. K. Ono, M. R. Leyden, S. Wang, Y. Qi, Organometal halide perovskite thin films and solar cells by vapor deposition.J. Mater. Chem. A 2016, 4, 6693-6713
34. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process.J Am Chem Soc 2014, 136, 622-625
35. M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, Y. Qi, High performance perovskite solar cells by hybrid chemical vapor deposition.J. Mater. Chem. A 2014, 2, 18742-18745
36. Y. Peng, G. Jing, T. Cui, A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells.J. Mater. Chem. A 2015, 3, 12436-12442
37. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Compositional engineering of perovskite materials for high-performance solar cells.Nature 2015, 517, 476-480
38. N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier, M. Gratzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angew Chem Int Ed Engl 2014, 53, 3151-3157
39. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park, Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell.Advanced Energy Materials 2015, 5, 1501310
40. H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J. Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells.Nano Energy 2014, 7, 80-85
41. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.Energy Environ Sci 2016, 9, 1989-1997
42. Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering.CrystEngComm 2010, 12, 2646
43. G. Grancini, C. Roldán-Carmona, I. Zimmermann, D. Martineau, S. Narbey, F. Oswald, M. K. Nazeeruddin, Ultra-
stable_2D3D_hybrid_perovskite_photovoltaic_m.Mesoscale and Nanoscale Physics 2016
44. L. M. Herz, Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites.Annu Rev Phys Chem 2016, 67, 65-89
45. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells.J. Mater. Chem. A 2015, 3, 8970-8980
46. Ian C. Smith, Eric T. Hoke, Diego Solis-Ibarra, Michael D. McGehee, H. I. Karunadasa*, Layered Hybrid Perovskite Solar-Cell Absorber with EnhancedMoisture Stability.Angew. Chem. Int. Ed 2014, 11232–11235
47. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications.J Am Chem Soc 2015, 137, 7843-7850
48. G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, One-Year stable perovskite solar cells by 2D/3D interface engineering.Nat Commun 2017, 8, 15684
49. M. Lira-Cantú, Perovskite solar cells: Stability lies at interfaces.Nature Energy 2017, 2, 17115
50. C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun, L. Tang, J. Yang, W. Luo, C. Li, Y. Deng, S. Feng, J. Shen, S. Lu, C. Du, H. Shi, 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.Nanoscale 2016, 8, 18309-18314
51. L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, Ligand-Stabilized Reduced-Dimensionality Perovskites.J. Am. Chem. Soc 2016, 138 2649−2655
52. K. F. Jensen, W. Kern, Academic Press 1991
53. P. V. Duppen, UNIVERSITY OF LEUVEN NUCLEAR SOLID STATE GROUP
54. Penn State Department of Chemistry
55. J. Schlipf, P. Müller-Buschbaum, Structure of Organometal Halide Perovskite Films as Determined with Grazing-Incidence X-Ray Scattering Methods.Advanced Energy Materials 2017, 1700131
56. T. Matsushima, S. Hwang, A. S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, M. Yahiro, C. Adachi, Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities.Adv Mater 2016, 28, 10275-10281
57. N. Li, Z. Zhu, C.-C. Chueh, H. Liu, B. Peng, A. Petrone, X. Li, L. Wang, A. K. Y.Jen, Mixed Cation FAxPEA1-xPbI3with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells.Advanced Energy Materials 2017, 7, 1601307
58. M. E. Kamminga, H.-H. Fang, M. R. Filip, F. Giustino, J. Baas, G. R. Blake, M. A. Loi, T. T. M. Palstra, Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids.Chemistry of Materials 2016, 28, 4554-4562
59. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent, Perovskite energy funnels for efficient light-emitting diodes.Nat Nanotechnol 2016, 11, 872-877
60. N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology.Materials Today 2015, 18, 65-72
61. J. Jagielski, S. Kumar, W.-Y. Yu, C.-J. Shih, Layer-controlled two-dimensional perovskites: synthesis and optoelectronics.J. Mater. Chem. C 2017, 5, 5610-5627