| 研究生: |
謝正益 Sie, Jheng-Yi |
|---|---|
| 論文名稱: |
快速準絕熱消跡波導的任意分光器 Optimization of Arbitrary Power Splitter with Fast Quasiadiabatic Elimination |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 快速準絕熱動態 、絕緣層覆矽 、任意分光器 、絕熱消跡 |
| 外文關鍵詞: | fast quasiadiabatic dynamics (FAQUAD), silicon-on-insulator (SOI), arbitrary power splitter, adiabatic elimination (AE) |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於研究利用快速準絕熱動態(FAQUAD)理論作用在三根波導的結構而達到不同比例分光的功能,並且這三根波導保有絕熱消跡(Adiabatic Elimination, AE)的特性。藉由定義線性矽光子元件的絕熱參數,以快速準絕熱動態來固定該絕熱參數為一常數,以達到重新分配波導沿傳播方向的絕熱特性與改變元件的結構,因此當光功率在波導間耦合時,不需要的高階模態不會被激發出來進而造成干擾耦合。
基於絕緣層覆矽(silicon-on-insulator, SOI)的線性AE波導,藉由改變中間波導與其他兩根波導之間的間距以達成不同比例分光的功能,接著透過快速準絕熱動態理論優化後的長度並去做模擬,以3-dB分光器為例可以從629.6μm縮短至224.9μm,其操作頻寬在100nm(1500nm~1600nm)下的穿透率保持3±1dB之間,另外在寬度的製程容忍度上在-50nm~+30nm之間能夠保持3±1dB之間。同理,透過改變中間波導與外側波導之間的間距也能做出70% / 30%、90% / 10%等等不同比例的分光器,其操作頻寬與製程容忍度也有相當良好的特性。
We present a broadband and high fabrication tolerance arbitrary power splitter based on silicon-on-insulator (SOI) three waveguides. We change the gap between the middle waveguide and the outer waveguides to achieve arbitrary power split ratio, satisfying the adiabatic elimination (AE) condition at the same time. We redistribute the adiabaticity parameter of linear AE waveguides by the fast quasiadiabatic dynamics, so we can shorten the device length and achieve broad bandwidth and high fabrication tolerance. We take a 3-dB coupler as an example, and simulate the linear AE waveguide and the fast quasiadiabatic elimination (FAQUE) waveguide. We can find that the FAQUE waveguide length is 224.9μm, which is shortened by 404.7μm compared to the linear AE waveguide length. The ±1dB bandwidth is 100nm (1500~1600nm) for the FAQUE device. The fabrication tolerance is 80nm (-50~+30nm). Similarly, We change the gap between the middle waveguide and the outer waveguides at the output to achieve arbitrary power splitter such as 30%/70% or 80%/20% power splitter. These power splitters also are broadband and have high fabrication tolerance.
1. B. Jalali, and S. Fathpour, “Silicon photonics”, IEEE J. Lightwave Technol. 24(6), pp.4600~4615 (2006).
2. L. Tsybeskov, D.J. Lockwood, and M. Ichikawa, “Silicon Photonics: CMOS Going Optical”, Proceedings of the IEEE, 97(7), pp. 1161~1165 (2009).
3. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. D. Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk”, Nature Photonics, 7, pp. 322~328 (2013).
4. C.A. Brackett, “Dense Wavelength Division Multiplexing Networks : Principles and Applications”, IEEE Journal on Selected Areas in Communications, 8(6), pp. 948~964 (1990).
5. B. Dong, X. Luo, T. Hu, T.X Guo, H. Wang, D.-L Kwong, P.G.-Q. Lo, and C. Lee, “Compact Low Loss Mid-Infrared Wavelength-Flattened Directional Coupler (WFDC) for Arbitrary Power Splitting Ratio Enabled by Rib Waveguide Dispersion Engineering”, IEEE Journal of Selected Topics in Quantum Electronics, 24(4), 4500108 (2018).
6. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator”, IEEE Photonics Technology Letters, 18(21), pp. 2287~2289 (2006).
7. Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference”, Optics Letters, 39(19), pp. 5590~5593 (2014).
8. S. Mart´ınez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics”, Phys. Rev. A 92, 043406 (2015).
9. H.-C. Chung, K.-S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics”, Optics Express 25(12), pp. 13626-13634 (2017).
10. Y.-Jr. Hung, Z.-Y. Li, H.-C. Chung, F.-C. Liang, M.-Y. Jung, T.-H. Yen, and S.-Y. Tseng, “Mode-evolution-based silicon-on-insulator 3 dB coupler using fast quasiadiabatic dynamics”, Optics Letters, 44(4), pp. 815~818 (2019).
11. M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides”, Nature Communications, 6, 7565 (2015).
12. F. Horst, W.M.J. Green, S. Assefa, S.M. Shank, Y.A. Vlasov, and B.J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing”, Optics Letters, 21(10), pp. 11652~11658 (2013).
13. K. Okamoto, Fundamentals of Optical Waveguides (Academic Second Edition), Chap 4 (2006).
14. D.F.G. Gallagher, and T.P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons”, Proceedings of SPIE, 4987, pp. 69~82 (2003).
15. E. Paspalakis, “Adiabatic three-waveguide directional coupler”, Optics Communications, 258(1), pp. 30~34 (2006).
16. M. Born, and V. Fock, "Beweis des Adiabatensatzes", Zeitschrift für Physik 51(3), pp. 165-180 (1928).
17. Z. Lu, H.Yun, Y. Wang, Z. Chen, F. Zhang, N.A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control”, Optics Express, 23(3), pp. 3795~3808 (2015).
18. Z. Lin, and W. Shi, “Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio”, Optics Express, 27(10), pp. 14338~14343 (2019).
19. J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, "Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling", Optics Letters 38(13), pp. 2221-2223 (2013).
校內:2024-07-31公開