| 研究生: |
魏麗勳 Wei, Li-Shiung |
|---|---|
| 論文名稱: |
建立以doxycycline 誘發Epstein-Barr 病毒在鼻咽癌細胞中再活化的模式 Establishment of a doxycycline-inducible model for Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells |
| 指導教授: |
張堯
Chang, Yao 蘇益仁 Su, Ih-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 溶裂期 、再活化 、鼻咽癌 、Epstein-Barr 病毒 |
| 外文關鍵詞: | Zta, nasopharyngeal carcinoma, lytic infection, reactivation, Epstein-Barr virus |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EB病毒再活化進入溶裂期感染已被認為與鼻咽癌有密切相關。但其在癌症發展中所扮演的角色目前仍不清楚。我們選擇使用EB病毒在鼻咽癌細胞中再活化的體外模式來探討此課題。然而,過去用於誘發EB病毒再活化的藥物,往往過度活化細胞中的訊息傳遞路徑或引起細胞凋亡,反而可能掩蓋EB病毒溶裂期產物對宿主細胞所造成的影響。為避免這些活化或毒殺細胞的副作用,EB病毒的再活化也可以經由外源表現一個重要的病毒前早期蛋白質Zta而被誘發。Zta為一個轉活化因子,可以啟動並促進下游的病毒溶裂期基因接續表現。
本篇研究中,我們建立了以doxycycline誘導Zta表現的方式,來啟動EB病毒在鼻咽癌細胞中再活化的模式。首先我們利用帶有綠色螢光基因的EB病毒感染可用doxycycline誘導Zta表現的鼻咽癌細胞株HONE-tetonZ後,再以限數稀釋的方式挑出單系細胞群落,透過觀察綠色螢光並以原位雜交反應偵測EB病毒小RNA的表現,挑選確認成功受到EB病毒感染的細胞,以doxycycline刺激該細胞表現Zta後,確實啟動EB病毒再活化,依序表現出溶裂期蛋白質,包括前早期抗原Zta與Rta,早期抗原BMRF1與BHRF1,以及晚期抗原VCA與MA。Real-time PCR的結果顯示,以doxycycline處理後,細胞中EB病毒的DNA量明顯增加,表示病毒大量的進行溶裂期DNA複製。此外,細胞經doxycycline刺激後,其細胞培養液中含有較多的細胞外病毒DNA,以及具有感染能力之病毒顆粒,顯示在我們的細胞模式中,EB病毒可以完成整個溶裂期的過程。MTT實驗結果也證明,相較於過去刺激病毒溶裂期的藥物, doxycycline對於細胞存活率的影響甚小。 既然doxycycline具有毒性小、副作用少的優點,這個能讓EB病毒有效率再活化的細胞模式將有助於探討病毒溶裂期感染如何影響鼻咽癌細胞或促成此癌症的發展。
Reactivation of Epstein-Barr virus (EBV) into the lytic cycle has been associated with nasopharyngeal carcinoma (NPC), but the roles of EBV lytic infection in the cancer development are unclear. To answer this question, we choose to use an in vitro model of EBV reactivation in NPC cells. However, previous studies stimulated EBV reactivation by using reagents that either over-activated cellular signaling pathways or caused cell death, which may have largely masked the effects of EBV lytic products on the host cells. Bypassing the lytic stimulators with cytoactive or cytotoxic side effects, EBV reactivation can also be induced by ectopic expression of Zta, an EBV immediate-early transactivator that essentially initiates and promotes expression cascade of downstream lytic genes. In this study, we established an EBV reactivation model in a NPC cell line where Zta expression is driven by a doxycycline-inducible promoter. First, we infected the doxycycline-inducible, Zta-expressing NPC cell line HONE-tetonZ with a recombinant EBV carrying an expression cassette of enhanced green fluorescence protein (EGFP) in the viral genome. The EGFP-positive cells were cloned by limiting dilution and EBV infection in the cells was re-confirmed by in situ hybridization detecting EBV-encoded small RNAs. Doxycycline treatment of the cells induced Zta, followed by serial expression of other EBV lytic proteins including the immediate-early antigens (Zta and Rta), two early antigens (BMRF1 and BHRF1), and two late antigens (virus capsid protein and membrane protein). Real-time PCR assay also showed significant increase of intracellular EBV DNA after doxycycline treatment, indicating viral DNA amplification in the lytic cycle. Moreover, culture supernatants of the doxycycline-treated cells contained more extracellular viral DNA and infectious virions, indicating completion of EBV lytic cycle in our cell model. Results from MTT assay showed that doxycycline had little effect on cell viability, compared with previous lytic stimulators. Considering the low toxicity and limited side effects of doxycycline, this cell model of efficient EBV reactivation will be useful to explore how the lytic infection affects NPC cells or contributes to NPC development.
Bouvier, G., Hergenhahn, M., Polack, A., Bornkamm, G.W., de The, G., and Bartsch, H. Characterization of macromolecular lignins as Epstein-Barr virus inducer in foodstuff associated with nasopharyngeal carcinoma risk. Carcinogenesis 16, 1879-1885. (1995)
Cayrol, C., and Flemington, E.K. The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. Embo J 15, 2748-2759. (1996)
Chang, Y., Lee, H.H., Chang, S.S., Hsu, T.Y., Wang, P.W., Chang, Y.S., Takada, K., and Tsai, C.H. Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-13036. (2004)
Chang, Y., Tung, C.H., Huang, Y.T., Lu, J., Chen, J.Y., and Tsai, C.H. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-8866. (1999)
Chien, Y.C., Chen, J.Y., Liu, M.Y., Yang, H.I., Hsu, M.M., Chen, C.J., and Yang, C.S. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-1882. (2001)
Cochet, C., Martel-Renoir, D., Grunewald, V., Bosq, J., Cochet, G., Schwaab, G., Bernaudin, J.F., and Joab, I. Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197, 358-365. (1993)
Cohen, J.I., and Lekstrom, K. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol 73, 7627-7632. (1999)
Fang, C.Y., Lee, C.H., Wu, C.C., Chang, Y.T., Yu, S.L., Chou, S.P., Huang, P.T., Chen, C.L., Hou, J.W., Chang, Y., et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 124, 2016-2025. (2009)
Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., and Delecluse, H.J. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo J 19, 3080-3089. (2000)
Feng, P., Ren, E.C., Liu, D., Chan, S.H., and Hu, H. Expression of Epstein-Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. J Gen Virol 81, 2417-2423. (2000)
Fingeroth, J.D., Weis, J.J., Tedder, T.F., Strominger, J.L., Biro, P.A., and Fearon, D.T. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81, 4510-4514. (1984)
Fixman, E.D., Hayward, G.S., and Hayward, S.D. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-5039. (1992)
Glaser, R., Zhang, H.Y., Yao, K.T., Zhu, H.C., Wang, F.X., Li, G.Y., Wen, D.S., and Li, Y.P. Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci U S A 86, 9524-9528. (1989)
Hahn, A.M., Huye, L.E., Ning, S., Webster-Cyriaque, J., and Pagano, J.S. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol 79, 10040-10052. (2005)
Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G., and Rickinson, A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 90, 8479-8483. (1993)
Hong, G.K., Gulley, M.L., Feng, W.H., Delecluse, H.J., Holley-Guthrie, E., and Kenney, S.C. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79, 13993-14003. (2005)
Hsu, M., Wu, S.Y., Chang, S.S., Su, I.J., Tsai, C.H., Lai, S.J., Shiau, A.L., Takada, K., and Chang, Y. Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 82, 3679-3688. (2008)
Inman, G.J., Binne, U.K., Parker, G.A., Farrell, P.J., and Allday, M.J. Activators of the Epstein-Barr virus lytic program concomitantly induce apoptosis, but lytic gene expression protects from cell death. J Virol 75, 2400-2410. (2001)
Israel, B.F., and Kenney, S.C. EBV lytic infection. In Epstein-Barr virus (England, Caister Academic Press), pp. 571-595. (2005)
Kaye, K.M., Izumi, K.M., and Kieff, E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90, 9150-9154. (1993)
Keating, S., Prince, S., Jones, M., and Rowe, M. The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol 76, 8179-8188. (2002)
Kieff, E.D., and Rickinson, A.B. Epstein-Barr virus and its replication. In Fields Virology (Philadelphia, Lippincott Williams and Wilkins), pp. 2603-2634. (2007)
Kudoh, A., Daikoku, T., Sugaya, Y., Isomura, H., Fujita, M., Kiyono, T., Nishiyama, Y., and Tsurumi, T. Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication. J Virol 78, 104-115. (2004)
Kudoh, A., Fujita, M., Kiyono, T., Kuzushima, K., Sugaya, Y., Izuta, S., Nishiyama, Y., and Tsurumi, T. Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol 77, 851-861. (2003)
Lee, C.P., Huang, Y.H., Lin, S.F., Chang, Y., Chang, Y.H., Takada, K., and Chen, M.R. Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82, 11913-11926. (2008)
Li, H.P., and Chang, Y.S. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504. (2003)
Liu, M.Y., Chang, Y.L., Ma, J., Yang, H.L., Hsu, M.M., Chen, C.J., Chen, J.Y., and Yang, C.S. Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol 52, 262-269. (1997)
Lo, Y.M., Chan, L.Y., Lo, K.W., Leung, S.F., Zhang, J., Chan, A.T., Lee, J.C., Hjelm, N.M., Johnson, P.J., and Huang, D.P. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59, 1188-1191. (1999)
Lu, J., Chen, S.Y., Chua, H.H., Liu, Y.S., Huang, Y.T., Chang, Y., Chen, J.Y., Sheen, T.S., and Tsai, C.H. Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol 74, 7391-7399. (2000)
Lu, J., Chua, H.H., Chen, S.Y., Chen, J.Y., and Tsai, C.H. Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63, 256-262. (2003)
Martel-Renoir, D., Grunewald, V., Touitou, R., Schwaab, G., and Joab, I. Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol 76 ( Pt 6), 1401-1408. (1995)
Maruo, S., Yang, L., and Takada, K. Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol 82, 2373-2383. (2001)
Miyazaki, I., Cheung, R.K., and Dosch, H.M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med 178, 439-447. (1993)
Ressing, M.E., Horst, D., Griffin, B.D., Tellam, J., Zuo, J., Khanna, R., Rowe, M., and Wiertz, E.J. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol 18, 397-408. (2008)
Rodriguez, A., Jung, E.J., Yin, Q., Cayrol, C., and Flemington, E.K. Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 284, 159-169. (2001)
Rowe, M., Glaunsinger, B., van Leeuwen, D., Zuo, J., Sweetman, D., Ganem, D., Middeldorp, J., Wiertz, E.J., and Ressing, M.E. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104, 3366-3371. (2007)
Salek-Ardakani, S., Arrand, J.R., and Mackett, M. Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology 304, 342-351. (2002)
Shanmugaratnam, K., and Sobin, L.H. The World Health Organization histological classification of tumours of the upper respiratory tract and ear. A commentary on the second edition. Cancer 71, 2689-2697. (1993)
Shao, Y.M., Poirier, S., Ohshima, H., Malaveille, C., Zeng, Y., de The, G., and Bartsch, H. Epstein-Barr virus activation in Raji cells by extracts of preserved food from high risk areas for nasopharyngeal carcinoma. Carcinogenesis 9, 1455-1457. (1988)
Strockbine, L.D., Cohen, J.I., Farrah, T., Lyman, S.D., Wagener, F., DuBose, R.F., Armitage, R.J., and Spriggs, M.K. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol 72, 4015-4021. (1998)
Wang, J.T., Doong, S.L., Teng, S.C., Lee, C.P., Tsai, C.H., and Chen, M.R. Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol 83, 1856-1869. (2009)
Wu, L., Fossum, E., Joo, C.H., Inn, K.S., Shin, Y.C., Johannsen, E., Hutt-Fletcher, L.M., Hass, J., and Jung, J.U. Epstein-Barr virus LF2: an antagonist to type I interferon. J Virol 83, 1140-1146. (2009)
Yip, T.T., Ngan, R.K., Lau, W.H., Poon, Y.F., Joab, I., Cochet, C., and Cheng, A.K. A possible prognostic role of immunoglobulin-G antibody against recombinant Epstein-Barr virus BZLF-1 transactivator protein ZEBRA in patients with nasopharyngeal carcinoma. Cancer 74, 2414-2424. (1994)
Yoshizaki, T., Sato, H., Murono, S., Pagano, J.S., and Furukawa, M. Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis 17, 431-436. (1999)
Young, L.S., and Rickinson, A.B. Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768. (2004)