簡易檢索 / 詳目顯示

研究生: 張彧豪
Chang, Yu-Hao
論文名稱: 拓樸絕緣體二鉍三硒的表面態及絕緣態電子傳輸研究
Electron transport in Bi2Se3 surface and bulk states
指導教授: 陳則銘
Chen, Tse-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 33
中文關鍵詞: 硒化鉍拓樸絕緣體
外文關鍵詞: Bi2Se3, topological insulator
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三維的拓樸絕緣體是一種新穎的半導體材料,它的表面可以進行電子傳輸而材料的內部相對於表面則是絕緣態,表面態的電子傳輸受到時間反轉對稱性的保護。拓樸絕緣體的表面態在近年來被廣泛的研究,但絕緣態大多都從表面態的實驗中進而用理論去推導出來。那最主要的原因就是在傳統的製程以及量測下,無法準確的區分表面態跟絕緣態的獨立性。

    在這個實驗中,我們展現一種新類型的製程。我們做出了電路分別接觸上以及下的表面態而沒接觸到絕緣態的部分。一開始先利用蒸鍍的方法把下電路鍍到基板上,接下來再利用機械剝離法以及乾式轉移的技術可以準確地把樣品放在一開始鍍好的電路上。一樣用乾式轉移的技術把氮化硼轉移到樣品的邊緣,而絕緣性良好的氮化硼的功用就是避免讓上電路直接接觸到樣品的側面。最後在把上電路鍍在樣品上,而我們可以藉由這樣的電路設計,進而在低溫下獨立的量測表面態以及絕緣態的性質。

    Three-dimensional topological insulator(TI) is a material with bulk insulation and surface conduction which are protected by time-reversal symmetry. Although surface state of TI has been extensively studied in ARPES, there have been not many studies in its transport properties. One of the major reasons is that it is difficult to well distinguish the surface transport from the bulk contribution in conventional electrical detection setup.

    Here, we show a new type of device with contacts on both the top and bottom surfaces. Firstly, we deposited the metallic back-contact on a heavily-doped Si/SiO2 substrate, then use mechanical exfoliation to exfoliate undoped Bi2Se3 upon the back-contact and use dry transfer technique to pick up BN on the sample edge. The BN is an insulating layer which prevent the contact from touching the edge and bottom-surface state. Finally, we put the top-contact on the Bi2Se3 flake. By tuning back-gate voltage, we study the electron transport along the surface and also through the bulk at the same time with our device design.

    Abstract …………………………………………………………………………..….1 摘要…………………………………………………………………………………..2 致謝…………………………………………………………………………………..3 Contents …………………………………………………………………………..…4 List of Figures………………………………………………………………………..6 1.Introduction ……….………………………………………………………........7 2.Theortical background ….……………………………………………………...10 2.1 Band structure of topological insulators ….……10 2.2 Crystal structure ….……………………………………………………..……12 2.3 The resistance/conductance of topological insulators..13 2.4 The weak localization and weak anti-localization…14 3.Fabrication Technique and methods ….…………………………...…16 3.1 Silicon Oxide (SiO2) wafer ….…………………………………….…………16 3.2 Alignment mark and back-contact ….…………………………….………….16 3.2.1 Alignment mark ….………………………………………...…………16 3.2.2 Back-contact…………………………………………………………..17 3.3 Scotch tape technique of transfer.………………………………….17 3.4 Electronic devices designing ………………………………………………...19 4. Measurement Technique……………………………………………………….20 4.1 Cryostat…………………………..…………………………………………..20 4.2 Constant current measurement ………………………………………………20 4.3 Constant voltage measurement ……..………………………………………..21 4.4 Two-terminal and four-terminal measurement……………………………....22 5. Experimental Result and Discussion …………………………….……23 5.1 The fabrication setup ...………………………………………………….…..23 5.2 Temperature-dependent surface and bulk resistances ...……………….……26 5.2.1 Measurement circuit……………………………………………….26 5.2.2 The resistance of surface and bulk of un-doped Bi2Se3 …..…27 5.3 The weak anti-localization in Bi2Se3 …………………….30 6. Conclusion ……………………………………………………………………31 Bibliography ………………………………………………………………………32

    (1) H. Zhang et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics 5, 438-442, (2009)
    (2) T. Zhang et al. Experimental Demonstration of Topological Surface States Protected by Time-Reversal Symmetry. Phys. Rev. L 103, 266803, (2009)
    (3) The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications 10, 1038, (2016)
    (4) Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757-1761, (2006)
    (5) Ko ̈nig, M. et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 318, 766-770, (2007)
    (6) J.G. Checkelsky. et al. Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3. Phys. Rev. L 106, 196801, (2011)
    (7) Yang Xu. Ireneusz Miotkowski. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nature Phys 10, 956-963, (2014)
    (8) Lihong Bao, Liang He, Nicholas Meyer. et al. Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te. Scientific Reports 10. 1038
    (9) C. L. Kane M. Z. Hasan. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045, (2010)
    (10) et al. D. Hsieh. A tuneable topological insulator in the spin helical dirac transport regime. Nature 460, 1101-1105, (2009)
    (11) Chen, J. et al. Gate-voltage control of chemical potential and weak anti-localization in Bi2Se3. Phys. Rev. Lett. 105(17), 176602(2010)
    (12) Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the dimensional random system. Prog. Theor. Phys. 63 (2), 707-710 (1980)
    (13) Matsuo, S. et al. Weak anilocalization and conductance fluctuation in sub micrometer-sized wire of epitaxial Bi2Se3. Phys. Rev. B 85(7), 075440 (2012)

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE