簡易檢索 / 詳目顯示

研究生: 吳漢平
Wu, Hann-Pyng
論文名稱: 3.9YSZ粉末粒度對大氣電漿噴塗固態氧化物燃料電池電解質的影響及燒結對其微結構及導電率改進之研究
Effects of Feedstock Powder Sizes on Atmospheric Plasma-Sprayed Solid Oxide Fuel Cell’s 3.9YSZ Electrolyte and Its Improvement by Sintering on Microstructure and Electrical Conductivities
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 208
中文關鍵詞: 氧化釔安定氧化鋯大氣電漿噴塗固態氧化物燃料電池
外文關鍵詞: Yttria-stabilized zirconia, Atmospheric plasma spraying, Solid oxide fuel cell
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氟化鈣螢石結構的8 mol.%氧化釔完全安定立方相的氧化鋯,其做中溫固態氧化物燃料電池之電解質,是一良好的離子導體,但其機械強度則較差。使用含較少安定劑的部份安定氧化鋯(Partially-stabilized zirconia, PSZ),其相較於8 mol.%氧化釔完全安定的立方相氧化鋯之離子的導電性則較差,但其電解質的機械強度、破斷靭性及耐熱衝擊性則會提高,其可製作較薄的電解質以降低其之阻抗,以減少整個燃料電池的歐姆損失。

    本研究探討粒度範圍在20-45、45-75、75-106 μm等三種不同大小之3.9 mol.%氧化釔安定氧化鋯(3.9YSZ)粉末,以大氣電漿噴塗方式製作固態氧化物燃料電池的電解質。大氣電漿噴塗是以氬氣流量45 L/min為主要電漿噴塗氣體,再加入三種不同流量(2, 7, 12 L/min) 輔助性的高熱焓及高熱導的氫氣做大氣電漿噴塗氣體,以研究高熱焓及高熱導性噴塗氣體,對大氣電漿噴塗製作3.9YSZ堆積膜的影響。由於大氣電漿噴塗3.9YSZ試片的導電性較差,故本研究亦探討在1300-1400℃的燒結對其微結構、物性、相變化及導電性上等的影響。

    本研究發現,當大氣電漿噴塗氣體裡的氫氣含量增加時,較高氫氣含量可提供較高的熱焓及較佳熱導性電漿氣體,其可增加粉末顆粒的熔融程度及提高融熔液滴的溫度以降低其黏滯性,以使大氣電漿噴塗的薄片狀結構在熔融液滴凝固前較容易向外延伸,使薄片狀結構較薄、較平順且有較大的面積,堆積膜的微結構則會有較多的柱狀晶成長並且較為緻密,材料含有較少的單斜晶相以使堆積膜有較高的導電性。在本研究的實驗結果顯示粒度為45-75 μm 的3.9YSZ粉末,在氬氣流量45 L/min及氫氣流量12 L/min的大氣電漿噴塗製作之電解質有最佳導電率,在800°C其約為2,860 (μS•cm-1),其離子導電機構有相當低的分解活化能(0.21 eV)並有相當低的遷移活化能(0.89 eV)。

    大氣電漿噴塗使用原料粉末粒度大小與堆積膜的表面粗糙度、硬度、體密度及視孔隙率等相關,當3.9YSZ粉末粒度愈大時,其大氣電漿噴塗的堆積膜表面也愈粗糙,若3.9YSZ粉末粒度較大在75-106 μm範圍,因其在電漿噴塗過程中並未使粉末顆粒完全熔融,及當3.9YSZ粉末粒度較小在20-45 μm範圍,因其在電漿噴塗過程中粉末顆粒被熔融且過度加熱,使這二種範圍的粉末粒度相對於粉末粒度範圍在45-75 μm,其堆積膜的硬度都會顯著的較低。當3.9YSZ原料粉末粒度為45-75 μm噴塗的堆積膜,不論輔助性的氫氣氣體流量大小(2, 7, 12 L/min),其噴塗堆積膜體密度相對於其它二種粉末都較高,且視孔隙率相對於其它二種粉末粒度都較低。

    大氣電漿噴塗3.9YSZ堆積膜,在1300及1400℃燒結2小時後,其堆積膜的體密度及視比重會下降,且其視孔隙率亦會下降,這應是由於部份的空孔在燒結中被封孔及部份 相轉成單斜相所致,但在延長燒結時間為10小時後,其體密度及視比重會上升至與原噴塗的堆積膜體密度相當,而試片的視孔隙率仍會維持比原噴塗的堆積膜低約5%。在1300及1400℃燒結10小時後電解質的硬度會顯著的增加約4-23 HR15YW左右,但表面粗糙度則改變不大,其柱狀晶及胞狀晶的微結構組織及薄片狀結構內及薄片狀結構間的微裂都仍存在燒結後的3.9YSZ電解質試片內。

    本研究的三種3.9YSZ粉末粒度,在電漿噴塗氣體裡添加輔助性的氫氣愈多,其所製作的電解質的導電率愈佳。但在燒結10小時後,則以粉末粒度為45-75 μm及使用氫氣含量7 L/min噴塗的試片,在1400℃燒結的最佳導電率約為11,584 (μS•cm-1),其之離子導電機構具有相當低的分解活化能(0.01 eV) ,但其遷移活化能(1.06 eV)則相當高,表示釔離子與氧孔缺的分解在導電機構的控制上是其最重要部份。在高的溫度(1300/1400℃)燒結10小時後,其堆積膜的晶粒在高溫(700-800℃)較原大氣電漿噴塗的3.9YSZ堆積膜的晶粒有較低的活化能,且燒結溫度愈高其活化能愈低亦即其晶粒有更多的氧孔缺。在低溫(500-700℃)則較原大氣電漿噴塗的3.9YSZ堆積膜的晶粒有較高的活化能,且燒結溫度愈高其活化能愈高亦即晶粒有更少的氧孔缺。其堆積膜的晶粒內的氧空缺複合體的整體平均分解(或結合)活化能較原大氣電漿噴塗的3.9YSZ堆積膜降低,但其隨著不同的大氣電漿噴塗條件及粉末粒度的不同而有很大的變異。

    The cubic fluorite structure of the 8 mol.% fully yttria-stabilized zirconia (8YSZ) is a good ionic conductor for the electrolyte of the intermeidiate-temperature solid oxide fuel cells (SOFCs). However, its mechanical properties are poor. Partially-stabilized zirconia (PSZ) with less phase stabilizer has lower electrical conductivities when compared with 8YSZ; however, its mechanical strength, fracture toughness, and thermal shock resistance are better than 8YSZ’s. Consequently it could be fabricated in a thinner form for the SOFC’s electrolyte to lower its electrical resistance to be able to lessen the whole cell’s ohm’s losses during operation.
    In this study, 3.9 mol.% yttria-stabilized zirconia (3.9YSZ) with feedstock powder particle sizes of 20-45、45-75、75-106 μm were sprayed by atmospheric plasma to fabricate 3.9YSZ solid electrolyte to investigate their microstructural, physical and electrical characteristics. The primary plasma spraying gas is argon gas at the flow rate of 45 L/min and the auxiliary high enthalpy-enhancing plasma gas is the hydrogen gas at the flow rates of 2, 7, 12 L/min.
    It is found that when increasing the flow rates of the hydrogen gas in the plasma spraying gas, it could enhance the melting extent of the feedstock powder and raise the temperatures of the molten droplets to lower their viscosity to let the deposited splats expand wider prior to solidification. It could make the deposits have more columnar grains, better physical characteristics and higher electrical conductivities. In this study, the deposit of the best electrical conductivity, 2,860 (μS•cm-1), was sprayed by the plasma spraying gas consisting of argon gas flow rate at 45 L/min and hydrogen gas flow rate at 12 L/min with the feedstock powder sizes 45-75 μm. Its electrical conductivity mechanism has relatively low dissociative activation energy (0.21 eV) and migratory activation energy (0.89 eV).
    The characteristics of the roughness of the deposit surfaces, the hardness, the bulk density and the apparent porosity were closely related with the feedstock powder sizes. The larger the feedstock powder was, the coarser the deposit surface appeared. The decrease of the hardness of the deposits was due to the incompletely melting of the coarser particles and the overheating of the smaller particles. When the particle sizes of 45-75 μm were employed, all the deposits had relatively lower apparent porosity and higher bulk density compared with the other two feedstock powder sizes. After spraying, most of the monoclinic phase originally contained in the raw feedstock powders were suppressed to be transformed into tetragonal (T) , cubic (F) phases and/or nontransformable tetragonal phase ( ).
    The sintering of atmospheric plasma sprayed 3.9YSZ deposits at 1300 and 1400°C for two hours would cause the deposits’ bulk densities and apparent specific gravities to be lowered. Nevertheless, the apparent porosities were reduced too. It should be caused by the sealing of some open porosity and the phase transformation of the nontransformable tetragonal phase ( ) into monoclinic phase. However, when the sintering time was extended into ten hours, the bulk densities and apparent specific gravities would rise to the same levels of the as-sprayed deposits, while the apparent porosities were still remained lower than the as-sprayed deposits for about 5%. The hardness of the sintered deposits increased about 4-23 HR15YW but the roughness were not affected much. The columnar and cellular grains still existed after sintering and the porosity and the microcracks among neighboring splats and within the splats still existed after being sintered.
    For all three different particle sizes, the more the hydrogen gas flow rate was, the higher electrical conductivity the deposit had. However, after being sintered, the best ionic conductivity, 11,584 (μS•cm-1), in this study was obtained at the deposit prepared by the particle sizes of 45-75 μm which was sprayed at the hydrogen gas flow rate at 7 L/min and sintered at 1400℃ for ten hours. Its mechanism of the electrical conductivity has relatively low dissociative activation energy (0.01 eV) but with quite high migratory activation energy (1.06 eV). It represents that the dissociation of the yttrium ions and oxygen vacancy is the main electrical conductivity control mechanism. At high temperatures (700-800 °C), the intragrain activation energy of the deposit decreased with increasing sintering temperature. In contrast, at low temperatures (500-700 °C), the intragrain activation energy of the deposit increased with increasing sintering temperature. The average dissociative/combinative activation energies decreased with increasing sintering temperature. However, there was great variation with spraying parameters and feedstock powder size.

    總目錄 中文摘要 Ⅰ 英文摘要 Ⅲ 總目錄 v 表目錄 IⅩ 圖目錄 ⅩII 英漢名詞與符號對照表 ⅩⅩI 第一章 序論 1 第二章 理論基礎與文獻回顧 5 2-1 燃料電池之開發 5 2-2 燃料電池之種類 6 2-3 燃料電池之理論效率與理論電動勢 12 2-3-1 燃料電池之理論效率 12 2-3-2 燃料電池之理論電動勢 12 2-4 燃料電池之極化 15 2-5 固態氧化物燃料電池之操作原理 19 2-5-1 固態氧化物燃料電池之操作原理 19 2-5-2 固態氧化物燃料電池之結構設計 20 2-5-3 固態氧化物燃料電池優點與應用 27 2-6 SOFC材料選擇 27 2-6-1 電解質材料 28 2-6-2 陰極材料 35 2-6-3 陽極材料 35 2-7 SOFC之製作方式 36 2-8 電漿熔射噴塗基礎原理 37 2-9 熔融液滴凝固薄片狀結構之形貌 52 2-10 交流阻抗分析原理 55 2-11 阿瑞尼斯公式離子導電性分析 58 第三章 實驗方法與步驟 61 3-1 實驗流程 61 3-2 晶體結構分析 66 3-3 穿透式電子顯微鏡分析 67 3-4 掃瞄式電子顯微鏡微結構觀察 67 3-5 導電性量測 67 3-6 活化能分析 68 3-7 視孔隙率、視比重及體密度量測 69 3-8 熱膨脹分析 71 3-9 表面粗糙度量測 71 3-10 堆積膜硬度測試 71 3-11 電漿熔射 73 第四章 粒度20-45μm之3.9YSZ粉末大氣電漿噴塗製作固態氧化物燃料電池電解質 75 4-1 大氣電漿噴塗堆積膜形成的微結構 82 4-2 大氣電漿噴塗3.9YSZ電解質的性質分析 84 4-3 導電率與溫度關係 88 4-4 再結晶在導電率上的影響 92 4-5 晶粒導電率及其之結晶結構 92 4-6 高溫燒結對大氣電漿噴塗3.9YSZ電解質微結構及導電率的影響 100 4-6-1 電解質各項特性的改變 100 4-6-1-1 電解質體密度 100 4-6-1-2 電解質視孔隙率 101 4-6-1-3 電解質視比重 101 4-6-1-4 電解質熱膨脹性 101 4-6-1-5 電解質硬度 104 4-6-1-6 電解質表面粗糙度 104 4-6-2 電解質晶粒改變 104 4-6-3 電解質單斜晶相的改變 104 4-6-4 電解質微結構的改善 108 4-6-5 電解質導電率的改善 108 4-7 小結 114 第五章 粒度45-75 μm之3.9YSZ粉末大氣電漿噴塗製作固態氧化物燃料電池電解質 116 5-1 大氣電漿噴塗堆積膜形成的微結構 116 5-2 大氣電漿噴塗堆積膜的性質分析 120 5-3 導電率與溫度關係 122 5-4 再結晶在導電率上的影響 126 5-5 導電率及其之結晶結構 129 5-6 晶界導電率與晶粒尺寸的關係 130 5-7 高溫燒結對大氣電漿噴塗3.9YSZ電解質微結構及導電率的影響 134 5-7-1 電解質各項特性的改變 134 5-7-1-1電解質體密度 134 5-7-1-2 電解質視孔隙率 135 5-7-1-3 電解質視比重 137 5-7-1-4 電解質膨脹性 137 5-7-1-5 電解質硬度 137 5-7-1-6 電解質表面粗糙度 137 5-7-2 電解質晶粒改變 137 5-7-3 電解質單斜晶相的改變 138 5-7-4電解質微結構的改善 143 5-7-5 電解質導電率的改善 143 5-8 小結 149 第六章 粒度75-106 μm之3.9YSZ粉末大氣電漿噴塗製作固態氧化物燃料電池電解質 151 6-1 大氣電漿噴塗堆積膜形成的微結構 151 6-2 大氣電漿噴塗堆積膜的性質分析 153 6-3 導電性與溫度關係 157 6-4 再結晶在導電率上的影響 161 6-5 導電率及其之結晶結構 164 6-6 晶界導電率與晶粒尺寸的關係 166 6-7 高溫燒結對大氣電漿噴塗3.9YSZ電解質微結構及導電率的影響 169 6-7-1 電解質各項特性的改變 169 6-7-1-1電解質體密度 169 6-7-1-2 電解質視孔隙率 169 6-7-1-3 電解質視比重 170 5-7-1-4 電解質膨脹性 170 6-7-1-5 電解質硬度 173 6-7-1-6 電解質表面粗糙度 173 6-7-2 電解質晶粒改變 173 6-7-3 電解質單斜晶相的改變 173 6-7-4電解質微結構的改善 177 6-7-5 電解質導電率的改善 177 6-8 小結 183 第七章 總結論 185 參考文獻 197

    1. B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, 414 (2001) 345-352.
    2. N. Q. Minh, “Ceramic Fuel Cells,” J. Am Ceram. Soc., 73 (1993) 563-588.
    3. A.J. Appleby, “Issues in fuel cell commercialization,” J. Power Sources, 69 (1996) 153-176.
    4. S. P. S. Badwal, “Stability of solid oxide fuel cell components,” Solid State Ionics, 143 (2001) 39-46.
    5. S.P.S. Badwala , F.T. Ciacchia, S. Rajendranb, and J. Drennan1, “An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3–Y2O3)–ZrO2(Al2O3),” Solid State Ionics, 109 (1998) 167-186.
    6. H. Yohiro, K. Eguchi, and H. Arai, “Ionic conduction and microstructure of the ceriastrontia system,” Solid State Ionics, 21 (1986) 37-47.
    7. R. N. Bluinenthal. F. S . Brugner, and J. E. Garnier, “The electrical conductivity of CaO-doped nonstoichiometric cerium dioxide from 700° to 1500°C,” J. Electrochem. Soc., 120 (1973) 1230-1237.
    8. H. L. Tuller and A. S. Nouick, “Doped ceria as a solid oxide electrolyte,” J. Electrochem. Soc., 122 (1975) 255-259.
    9. T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116 (1994) 3801-3803.
    10. T. Ishihara, H. Matsuda, and Y. Takita, “Effect of rare earth cations doped for La stie on the oxide ionic conductivity of LaGaO3-based perovskite type oxide,” Solid State Ionics, 79 (1995) 147-151.
    11. M. Feng, J. B. Goodenough, K. Huang, and C. Milliken, “Fuel cells with doped lanthanum gallate electrolyte,” J. Power Sources, 63 (1996) 47-51.
    12. N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldinger, “Review Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc., 19 (1999) 1801-1826.
    13. H. Kruidhof, K.J. De Vries, and A.J. Burggraaf, “Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions,” Solid State Ionics, 37 (1990) 213-215.
    14. P.J. Dodor, J. Tanka, and A. Watanabe, “Electrical characterization of phase transition in yttrium doped bismuth oxide Bi1.55Y0.45O3,” Solid State Ionics, 25 (1987) 177-181.
    15. W. R. Grove, “On Voltavic Series and the Combination of Gases by Platium,” Philos. Mag, 14 (1839) 127.
    16. P. Zegers, “Fuel Cell in Europe,” J. Power Sources, 29 (1990) 133-142.
    17. B. C. H. Steele and A. Heinze, “Materials for fuel-cell technologies,” Nature, 414 (2001) 345-352.
    18. J. Larminie and A. Dicks, “Fuel Cell Systems Explained,” John Wiley & Sons Ltd, (2003).
    19. Matthew M. Mench, “Fuel Cell Engines,” John Wiley & Sons, Inc., (2008).
    20. 燃料電池の技術, 電気學會•燃料電池發電 / 次世代システム技術調查專門委員會編(平成14年) 全華科技圖書 溫武義譯
    21. S. C Singhal and K. Kendall, “High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications,” Elsevier Ltd., Oxford, (2004) 61.
    22. C. Suna and U. Stimming, “Recent anode advances in solid oxide fuel cells,” J. Power Sources, 171 (2007) 247-260.
    23. G. Hoogers, “Fuell Cell Technology Handbook,” (2002) 2-11.
    24. Matthew M. Mench, “Fuel Cell Engines,” John Wiley & Sons, Inc., Hoboken, (2008) 383.
    25. N. Q. Minh, “Ceramics fuel cells,” J. Am. Ceram. Soc., 76 [3] (1993) 563-588.
    26. S. C Singhal and K. Kendall, “High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications,” Elsevier Ltd., Oxford, (2004) 198.
    27. L. W. Tai and P. A. Lessing, “Plasma spraying of porous electrodes for a planar solid oxide fuel cell,” J. Am. Ceram. Soc., 74 (1991) 501-504.
    28. A. O. Iesenberg, “Fuel cell generator,” US Patent No.4395468, (1983).
    29. S. C Singhal and K. Kendall, “High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications,” Elsevier Ltd., Oxford, (2004) 211.
    30. J. Larminie and A. Dicks, “Fuel Cell Systems Explained,” John Wiley & Sons Ltd, (2003) 213-216.
    31. N. Q. Minh, “High Temperature Fuel Cells. Part 2: The Solid Oxide Cell,” Chem. Tech., 21 (1991) 120-126.
    32. S. Majumdar, T. Claar, and B. Flandermayer, “Stress and fracture-behavior of monolithic fuel-cell tapes,” J Am. Ceram. Soc., 69 (1986) 628-633.
    33. J. P. Ackerman and J. E. Young, “Solid oxide fuel cell having monolithic core,” U.S. Pat. No. 4476198, (1984).
    34. R. B. Poeppel and J. T. Dusek, “Solid oxide fuel cell having monolithic cross flow core and manifolding,” U.S. Pat. No. 4476196, (1984).
    35. P. Blennow, J. Hjelm, T. Klemensø, Å. H. Persson, S. Ramousse, and M. Mogensen, “Planar metal-supported SOFC with novel cermet anode,” Fuel Cells, 11 [5] (2011) 661-668.
    36. Y. B. Matus, L. C. De Jongheb, C. P. Jacobsonb, and S. J. Visco, “Metal-supported solid oxide fuel cell membranes for rapid thermal cycling,” Solid State Ionics, 176 (2005) 443–449.
    37. N. P. Brandon, D. Corcoran, D. Cummins, A. Duckett, K. El-Khoury, D. Haigh, R. Leah, G. Lewis, N. Maynard, and T. McColm, “Development of Metal Supported Solid Oxide Fuel Cells for Operation at 500-600°C,” J. Mater. Eng. Perform., 13 [3] (2004) 253-256.
    38. S. Hui, D. Yang, Z. Wang, S. Yick, C. D. Petit, W. Qu, A. Tuck, R. Maric, and Dave Ghosh, “Metal-supported solid oxide fuel cell operated at 400–600◦C,” J. Power Sources, 167 [2] (2007) 336-339.
    39. Y. M. Chiang, D. Birnie, and W.D. Kingery, “Physical Ceramics,” John Wiley, New York, (1997).
    40. O.Yamamoto, “Solid oxide fuel cells: fundamental aspects and prospects,” Electrochim. Acta, 45, (2000) 2423.
    41. B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, 414 (2001), 345-352.
    42. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, “Electrical conductivity of the ZrO2–Ln2O3(Ln=lanthanides) system,” Solid State Ionics, 121 (1999) 133-139.
    43. S.P.S. Badwal and J. Drennan, “Yttria-zirconia: effect of microstructure on conductivity,” J. Mater. Sci., 22 (1987) 3231-3239.
    44. R.C. Garvie, R.H.J. Hannink, and R.T. Pascoe, “Ceramic steel?,” Nature, 258 (1975) 703-704.
    45. A.H. Heuer and M. Rühle, "Science and technology of zirconia II," Advances In Ceramics, vol.12, (1984) 2-3.
    46. M. Yashima, T. Mitsuhashi, H. Takashina, M. Kakihana, T. Ikegami, and M. Yoshimura, “Tetragonal-Monoclinic Phase Transition Enthalpy and Temperature of ZrO2-CeO2 Solid Solutions,” J. Am. Ceram. Soc., 78 (1995) 2225-2228.
    47. Y. Du, Z. Jin, and P. Huang, “Thermodynamic assessment of the ZrO2-YO1.5 System,” J. Am. Ceram. Soc., 74 (1991) 1569-1577.
    48. M. Yashima, T. Hirose, S. Katano, Y. Suzuki, M. Kakihana, and M. Yoshimura, “Structural changes of ZrO2-CeO2 solid solutions around the monoclinic-tetragonal phase boundary,” Phys. Rev., B 51 (1995) 8018-8025.
    49. M.M. Nasrallah and D.L. Douglas, “Ionic and electronic conductivity in Y2O3-doped monoclinic ZrO2,” J. Electrochem. Soc., 6 (1974) 255-262.
    50. N. Bonanos, R. K. Slotwinski, B.C.H. Steele, and E. P. Butler, “Electrical conductivity /microstructural relationships in aged CaO and CaO + MgO partially-stabilized zirconia,” J. Mater. Sci., 19 (1984) 785-793.
    51. E.C. Subbarao; in:Advances in Ceramics, Vol. 3, Ed. by A. H. Heuer and L.W. Hobbs, (1981) 1-24.
    52. S.P.S. Badwal, “Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity,” Solid State Ionics, 52 (1992) 23-32.
    53. H. Yahiro, Y. Eguchi, K. Eguchi, and H. Arai, “Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure,” J. Appl. Electrochem., 18 (1988) 527-531.
    54. T. Takahashi, in: Physics of Electrolytes, Vol. 2, Ed. by J. Hladik, Academic Press, New York, (1972) 1008
    55. Advances in Ceramics, Vol. 3, Science and Technology of Zirconia. Edited by A. H. Heuer and L. W. Hobbs, (1981).
    56. R. N. Bluinenthal, F. S. Brugner, and J. E. Garnier, “The electrical conductivity of CaO-doped nonstoichiometric cerium dioxide from 700 to 1500℃,” J . Electrochem. Soc., 120 (1973) 1230-1237.
    57. H. L. Tuller and A. S. Nouick, “Doped ceria as a solid oxide electrolyte,” J. Electrochem. Soc., 122 (1975) 255-259.
    58. T. E. Swarr, S. Karavolis, and D L Maricle, ”Enhanced Ceria-A Low Temperature SOFC Electrolyte,” in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, 3 (1990) 256-261.
    59. K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxides for solid oxide fuel cell,” J. Alloys Compds, 250 (1997) 486-491.
    60. F. M. B. Marques and L. M. Navarro, “Performance of double layer electrolyte cells Part I: Model behavior,” Solid State Ionics, 90 (1996) 183-192.
    61. T. Inoue, T. Setoguchi, K. Eguchi, and H. Arai, “Study of a solid oxide fuel cell with a ceria-based solid electrolyte,” Solid State Ionics, 35 (1989) 285-291.
    62. H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, “High temperature fuel cell with ceria-yttria solid electrolyte,” J. Electrochem. Soc., 135 (1988) 2077-2080.
    63. K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells,” Solid State Ionics, 52 (1992) 165-172.
    64. T. Takahashi, H. Iwahara, and Y. Nagai., “High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3,” J. Appl. Electrochem., 2 (1972) 97-104.
    65. M. Miyayanm. T. Nishi, and H. Yanagida, “Oxygen ionic conduction in Y2O3-stabilized Bi2O3 and ZrO2 composites,” J. Mater. Sci., 22 (1987) 2624-2628.
    66. M. J. Verkerk, K. Keizer, and A. J. Burggraaf, “High oxygen ion conduction in of the Bi2O3-Er2O3 system sintered oxides,” J. Appl. Electrochem., 10 (1980) 81-90.
    67. T. Takahashi, T. Esaka, and H. Iwahara, “Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity,” J . Appl. Electrochem., 7 (1977) 303-308.
    68. R. L. Cook, R C. MacDuff, and A. F. Sammells, “Perovskite solid electrolytes for intermediate temperature solid oxide fuel cells,” J. Electrochem. Soc., 137 (1990) 3309-3310.
    69. T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116 (1994) 3801-3803.
    70. T. Ishihara, H. Matsuda, and Y. Takita, “Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide,” Solid State Ionics, 79 (1995) 147-151.
    71. K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, and H. Yokawa, “Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs,” Solid State Ionics, 108 (1998) 415-421.
    72. T. Fukui, S. Ohara, K.. Murata, H. Yoshida, H. Miura, and T. Inagaki, “Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film,” J. Power Sources, 106 (2002) 142-145.
    73. R. Pelosato, I. Natali Sora, V. Ferrari, G.Dotelli, and C.M. Mari, “Preparation and characterisation of supported La0.83Sr0.17Ga0.83Mg0.17O2.83 thick films for application in IT-SOFCs,” Solid State Ionics, 175 (2004) 87-92.
    74. K. Huang, R. S. Tichy, and J. B. Goodenough, “Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties,” J. Am. Ceram. Soc., 81 [10] (1998) 2565–2575.
    75. D. Lybye , F. W. Poulsen, and M. Mogensen, “Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites,” Solid State Ionics 128 (2000) 91–103.
    76. T. Y. Chen and K. Z. Fung, “Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3,” J. Power Sources, 132 (2004) 1–10.
    77. J. A. Kilncr, P Barrow, R. J. Brook, and M. J. Norgett, “Electrolyte for the high temperature fuel cell; experimental and theoretical studies of the perovskite LaAlO3,” J. Power Sources, 3 (1978) 67-80.
    78. J. Mizusaki, I. Yasuda, J. I. Shimoyama, S. Yamauchi, and K. Fueki, “Electrical conductivity, defect equilibrium and oxygen vacancy diffusion coefficient of La1-xCaxAlO3-δ single crystals,” J. Electrochem. Soc., 140 (1993) 467-471.
    79. J. Tanaka. K. Takahashi, K. Yukino, and S. Horiuchi, “Electrical conduction of (La, ,Ca,, ,)MnO, with homogeneous ionic distribution,” Phys. Status Solidi, 80 (1983) 621-30.
    80. M. Fandel. J. Hoschele, W. Schafer, and R. Schmidberger, “Properties of Ca-Doped LaMnO3,” in Euro-ceramics, Vol. 2, Properties of Ceramics. Ed. by G. de With, R. A. Lerpstra, and R. Metselaar, (1989) 2.236-2.240.
    81. O. Yamamoto, Y. Takeda, R. Kanno, and M. Noda, “Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells,” Solid State lonics, 22 (1987) 241-246.
    82. A. Hammouche, E. L. Schouler, and M. Henault, “Electrical and thermal properties of Sr-doped lanthanum manganites,” Solid Stute lonics, 28-30 (1988) 1205-1207.
    83. H. Taimatsu, K. Wada, and H. Kaneko, “Mechanism of Reaction between Lanthanum Manganite and Yt t r ia-Stabilized Zirconia,” J . Am. Ceram. Soc., 75 (1992) 401-405.
    84. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, “Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte,” Solid State lonics, 40/41 (1990) 398-401.
    85. J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, and K. Fueki, “Electrical conductivity and seebeck coefficient of nonstoichiometric Lal-xSrxCoO3-δ,” J . Electrochem. Soc., 136 ( 1989) 2082-2088.
    86. I. F. Kononyuk, S . P. Tolochko, V. A. Lutsko, and V. M. Anishchik, “Preparation and Properties of Lal-xCaxCoO3 (0,2 ≤ x ≤0,6),” J. Solid State Chem., 48 (1983) 209-214.
    87. Y. Ohno, S. Nagata, and H. Sato, “Properties of oxides for high temperature solid electrolyte fuel cell,” Solid State Ionics, 9/10 (1983) 1001-1008.
    88. Y. Ohno, S. Nagata, and H. Sato, “Effect of electrode materials on the properties of high-temperature solid electrolyte fuell cells,” Solid State Ionics, 3/4 (1981) 439-442.
    89. T. J. Gray, “Strontium ceramics for chemical applications,” J . Power Sources, 6 (1981) 121-142.
    90. S. P. Simmer, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, and J. W. Stevenson, “Development of lanthanum ferrite SOFC cathodes,” J. Power Sources, 113 (2003) 1.
    91. O. Yamamoto, Y. Takeda, R. Kanno, and M. Noda, “Perovskite-type oxides as oxygen lectrodes for high temperature oxide fuel cells,” Solid State Ionics, 22 (1987) 241-246.
    92. B. C. H. Steele, “Survey of materials selection for ceramic fuel cells II. Cathodes and anodes,” Solid State Ionics, 86-88 (1996) 1223-1234.
    93. H.C. Yu and K.Z. Fung, “La1-xSrxCuO2.5 as new cathode materials for intermediate temperature SOFCs,” Mater. Res. Bull., 38 (2003) 231-239.
    94. H.C. Yu and K.Z. Fung, “Role of Sr addition on the structure stability and electrical conductivity of Sr-doped lanthanum copper oxide perovskites,” J. Mater. Res., 19 (2004) 943.
    95. H.C. Yu and K.Z. Fung, “Electrode properties of La1-xSrxCuO2.5-δ as new cathode materials for intermediate temperature SOFCs,” J. Power Sources, 133 (2004) 162-168.
    96. S. P. Jlang and S. H. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mater. Sci., 39 (2004) 4405-4439.
    97. B. D. Boer, M. Gonzalez, H. J . M. Bouwmeester, and H. Verweij, “The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes,” Solid State Ionics, 127 (2000) 269-276.
    98. H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, and M. Dokiya, “Configurational and electrical behavior of Ni-YSZ cermet with novel microstructure for solid oxide fuel cell anodes,” J. Electrochem. Soc., 144 (1997) 641-646.
    99. C. Suna and U. Stimming, “Review recent anode advances in solid oxide fuel cells,” J. Power Sources, 171 (2007) 247-260.
    100. Y. Matsuzaki and I. Yasuda, “The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration,” Solid State Ionics, 132 (2000) 261–269.
    101. T. Hibino, A. Hashimoto, K. Asano, M. Yano, M. Suzuki, and M. Sano, “An intermediate-temperature solid oxide fuel cell providing higher performance with hydrocarbons than with hydrogen,” Electrochem. Solid-State Lett., 5 (2002) A242–A244.
    102. D. Hirabayashi, A. Hashimoto, T. Hibino, U. Harada, and M. Sano, “Bi-based oxide anodes for direct hydrocarbon SOFCs at intermediate temperatures,” Electrochem. Solid-State Lett., 7 (2004) A108–A110.
    103. B.A. Boukamp, “The amazing perovskite anode,” Nat. Mater., 2 (2003) 294–296.
    104. C. Wang, W.L. Worrell, S. Park, J.M. Vohs, and R.J. Gorte, “Fabrication and performance of thin-film YSZ solid oxide fuel cells,” J. Electrochem. Soc., 148 (2001) A864–A868.
    105. S.W. Tao and J.T.S. Irvine, “A redox-stable efficient anode for solid-oxide fuel cells,” Nat. Mater., 2 (2003) 320–323.
    106. A. Kaiser, J.L. Bradley, P.R. Slater, and J.T.S. Irvine, “Tetragonal tungsten bronze type phases (Sr1-xBax)0.6Ti0.2Nb0.8O3-δ: Material characterisation and performance as SOFC anodes,” Solid State Ionics, 135 (2000) 519–524.
    107. M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, and K.E. Sickafus, “Oxygen migration in A2B2O7 pyrochlores,” Solid State Ionics, 140 (2001) 201–208.
    108. Z. Cheng, S.W. Zha, and M.L. Liu, “Stability of materials as candidates for sulfur-resistant anodes of solid oxide fuel cells,” J. Electrochem. Soc., 153 (2006) A1302–A1309.
    109. S. G. Kim, S. P. Yoon, S. W. Nam, S. H. Hyun, and S. A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method,” J. Power Sources, 110 (2002) 222-228.
    110. M. Mogensen, N.M. Sammes, and G.A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, 129 (2000) 63-94.
    111. K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, “Sputtered La0.5Sr0.5MnO3–yttria stabilized zirconia composite film electrodes for SOFC,” Solid State Ionics, 98 (1997) 49-55.
    112. J. Will, M. K. M. Hruschka, L. Gubler, and L. J. Gauckler, “Electrophoretic deposition of zirconia on porous anodic substrates,” J. Am. Ceram. Soc., 84[2] (2001) 328-332.
    113. N. Nakagawa, C. Kuroda, and M. Ishida, “Preparation of Thin-Film Zirconia Electrolyte Fuel Cell by RF Sputtering,” Denki Kagaku, 57 (1989) 215-218.
    114. M. Scagliotti, F. Parmigiani, G. Samoggia, G. Lanzi, and D. Richon, “Structural properties of plasma-sprayed zirconia-based electrolytes,” J. Mater. Sci., 23 (1988) 3764–3770.
    115. D. Simwonis, H. Thulen, F.J. Dias, A. Naoumidis, and D. Stover, “Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix process,” J. Mater. Process. Technol., 92-93 (1999) 107-111.
    116. J. Y. Yi and G. M. Choi, “Cathodic properties of La0.9Sr0.1MnO3 electrodes for fuel cells based on LaGaO3 solid electrolyte,” J. Eur. Ceram. Soc., 24 (2004) 1359-1363.
    117. C. Xia and M. Liu, “Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing,” Solid State Ionics, 144 (2001) 249-255.
    118. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L.J. Gauckler, “Fabrication of thin electrolytes for second-generation solid oxide fuel cells,” Solid State Ionics, 131 (2000) 79-96.
    119. M. Bertagnolli, M. Marchese, G. Jacucci, I. S. Doltsinis, and S. Noelting, “Thermomechanical simulation of the splashing of ceramic droplets on a rigid substrate,” J. Comput. Phys., 133 (1997) 205-221.
    120. R. B. Heimann, “Plasma Spray Coating Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008) 21-22.
    121. R. B. Heimann, “Plasma Spray Coating Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008) 80.
    122. R. B. Heimann, “Plasma Spray Coating Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008) 104.
    123. R. B. Heimann, “Plasma Spray Coating: Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2008) 49.
    124. R. B. Heimann, “Plasma Spray Coating: Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2008) 88.
    125. R. Suryanarayanan, “Plasma Spraying Theory and Applications,” (2008) 131.
    126. R. B. Heimann, “Plasma Spray Coating: Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2008) 36.
    127. R. B. Heimann, “Plasma Spray Coating: Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2008) 96.
    128. S. Kou, “Welding Metallurgy,” 2nd ed., John Wiley & Sons, Inc., (2003) 159.
    129. W.F. Savage, E.F. Nippes, and T.W. Miller, “Microsegregation in 70Cu-30Ni weld metal,” J. Weld, 55 (1976) 165S-173S.
    130. E. Barsoukov and J. Ross Macdonald, “Impedance Spectroscopy Theory, Experiment, and Applications,” 2nd ed., John Wiley & Sons, Inc., (2005) 474.
    131. C. Zhang, C.J. Li, G. Zhang, X.J. Ning, C.X. Li, H. Liao, and C. Coddet, “ Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte,” Mater. Sci. Eng. B, 137 (2007) 24-30.
    132. H.L. Tuller, D.P. Button and D.R. Uhlmann, “Fast ion transport in oxide glasses,” J. Non-Cryst. Solids, 40 (1980) 93-118.
    133. R. Syed, D.L. Gavin, and C.T. Moynihan, “Functional Form of the Arrhenius Equation for Electrical Conductivity of Glass,” J. Am. Ceram. Soc., 65[8] (1982) C-129-C-130.
    134. P. Mondal, A. Klein, W. Jaegermann, and H. Hahn, ”Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia,” Solid State Ionics, 118 (1999) 331-339.
    135. H. Hayashia, T. Saitoua, N. Maruyamaa, H. Inaba, K. Kawamurab, and M. Mori, ”Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents,” Solid State Ionics, 176 (2005) 613-619.
    136. R. B. Heimann, “Plasma Spray Coating: Principles and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008) 36.
    137. R. Suryanarayanan, “Plasma Spraying Theory and Applications,” World Scientific Publising Co. Pte. Ltd., Singapore (1992) 39.
    138. D.W. Strickler and W.G. Carlson, “Ionic Conductivity of Cubic Solid Solutions in the System CaO-Y2O3-ZrO2,” J. Am. Ceram. Soc., 47 [3] (1964) 122-127.
    139. J.H. Park and R.N. Blumenthal, “Electronic Transport in 8 Mole Percent Y2O3-ZrO2,” J. Electrochem. Soc., 136 [10] (1989) 2867-2876.
    140. L. D. Burke, H. Rickert, and R. Steiner, Z. Phys. Chem. NF, 74 (1971) 146.
    141. N. Bonanos, R. K. Slotwinski, B.C.H. Steele, and E. P. Butler, “Electrical conductivity/microstructural relationships in aged CaO and CaO + MgO partially-stabilized zirconia,” J. Mater. Sci., 19 (1984) 785-793.
    142. M. Han, X. Tang, H. Yin, and S. Peng, “Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs,” J. Power Sources, 165 (2007) 757-763.
    143. J. Nowotny, T. Bak, M. K. Nowotny, and C. C. Sorrell, “Charge transfer at oxygen/zirconia interface at elevated temperatures Part 1: Basic properties and terms,” Adv. Appl. Ceram., 104 (2005) 147-153.
    144. M. J. Verkerk, B. J. Middelhuis, and A. J. Burggraaf, “Effect of grain boundaries on the conductivity of high-purity ZrO2-Y203 ceramics,” Solid State Ionics, 6 (1982) 159-170.
    145. M. Hattori, Y. Takeda, Y. Sakaki, A. Nakanishi, S. Ohara, K. Mukai, J.H. Lee, and T. Fukui, “Effect of aging on conductivity of yttria stabilized zirconia,” J. Power Sources, 126 (2004) 23-27.
    146. C. Haering, A. Roosen, and H. Schichl, “Degradation of the electrical conductivity in stabilised zirconia systems Part I: yttria-stabilised zirconia,” Solid State Ionics, 176 (2005) 253-259.
    147. B. Butz, P. Kruse, H. Störmer, D. Gerthsen, A. Müller, A. Weber, and E. Ivers-Tiffée, “Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2,” Solid State Ionics, 177 (2006) 3275-3284.
    148. “Surface Texture,” ANSI B46.1, Published by The American Society of Mechanical Engineer, (1978) 27.
    149. P. Mondal, A. Klein, W. Jaegermann, and H. Hahn, ”Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia,” Solid State Ionics, 118 (1999) 331-339.
    150. C. Zhang, C. J. Li, G. Zhang, X. J. Ning, C. X. Li, H. Liao, and C. Coddet, “Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte,” Mater. Sci. Eng. B, 137 (2007) 24-30.
    151. J.R. Brandon, and R. Taylor, “Phase stabifity of zirconia-based thermal barrier coatings Part I. Zirconia—yttria alloys,” Surf. Coat. Technol. 46 (1991) 75-90.
    152. C. L. Curtis, D. T. Gawne, and M. Priestnall, “The processing and electrical properties of plasma-sprayed yttria-zirconia, J. Mater. Sci., 29 (1994) 3102–3106.
    153. M. Yoshimura, M. Yashima, and Tatsuo Noma, “Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2-ROl.s systems (R = rare earths) ,” J. Mater. Sci., 25 (1990) 2011-2016.
    154. H. Toraya, M. Yoshimura, and S. Somiya, “Calibration curve for quantitative analysis of the monoclinic-tetragonal Zr02 system by X-ray diffraction,” J. Am. Ceram. Soc., 67[6] (1984) C-119 – C-121.
    155. H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative analysis of monoclinic-stabilized cubic ZrO2 systems by X-ray diffraction,” J. Am. Ceram. Soc., 67[9] (1984) C-183 – C-184.
    156. X. J. Ning, C. X. Li, C. J. Li, and G. J. Yang, “Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process,” Mater. Sci. Eng. A, 428 (2006) 98-105.
    157. G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H.-P. Bossmann, “Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns,” J. Am. Ceram. Soc., 90 [9] (2007) 2935-2940.
    158. M. Han, X. Tang, H. Yin, and S. Peng, “Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs,” J. Power Sources, 165 (2007) 757-763.
    159. X. J. Chen, K. A. Khor, S. H. Chan, and L. G. Yu, “Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte,” Mater. Sci. Eng. A, 335 (2002) 246-252.
    160. X. J. Chen, K. A. Khor, S. H. Chan, and L. G. Yu, “Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 wt.% silica-doped yttria-stabilized zirconia (YSZ) ,” Mater. Sci. Eng. A, 374 (2004) 64-71.
    161. B. D. Culity, “Elements of X-Ray Diffraction,” Addison-Wesley Publishing, (1978).

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE